
I2C Logic Level Converter 4 Channel Bi- Directional Module

Because the Arduino (and Basic Stamp) are 5V devices, and most modern sensors, displays, flash cards and modes are 3.3V-only, many makers find that they need to perform level shifting/conversion to protect the 3.3V device from 5V.

This breakout has 4 BSS138 FETs with 10K pull ups. It works down to 1.8V on the low side and up to 10V on the high side.

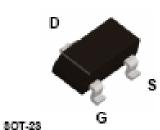
The level converter is very easy to use. The board needs to be powered from the two voltages sources (high voltage and low voltage) that your system is using. High voltage (5V for example) to the HV' pin, low voltage (3.3V for example) to LV', and ground from the system to the GND pin.

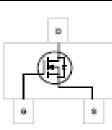
Features:

- Connects a 3.3V device to a 5V system
- Steps down 5V signals to 3.3V AND steps up 3.3V to 5V simultaneously
- This level converter also works with 2.8V and 1.8V devices.
- Sets high and low voltages and step up and down on the same channel
- Each level converter has the capability of converting 4 pins on the high side to 4 pins on the low side with two inputs and two outputs provided for each side.
- Dimensions:0.63 x 0.52" (16.05 x 13.33mm)

FAIRCHILD

SEMICENDUCTOR


BSS138 N-Channel Logic Level Enhancement Mode Field Effect Transistor


General Description

These N-Channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide ragged, reliable, and fast switching performance. These products are particularly suited for tew voltage, low current applications such as small serve motor control, power MOSPET gate drivers, and other switching applications.

Featurec

- 0.22 A, 50 V. Rosest = 3.50 @ Vos = 10 V Rosest = 6.00 @ Vos = 4.5 V
- High density cell design for extremely low Rosson
- Rugged and Reliable
- Compact industry standard SOT-23 surface mount package

Absolute Maximum Ratings Terrenter device the second

8ymbol	Parameter		Ratings	Unite		
loss	Drain-Source	Drain-Source Voltage		50	V	
kana	Oate-Source	Gate-Source Voltage		±20	V	
6	Drain Curren	t - Continuous	(1900) 1)	0.22	A	
	- Puted			0.88		
P _e	Maximum Power Dissipation (Hole 1)		0.36	W		
-	Denate Above 25°C			2.8	niW*0	
La Tere	Operating and Storage Junction Temperature Range		-55 to +150	-C		
r,	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds		Soldering Seconds	300	•C	
Therma	I Charact	teristics	•		•	
Thermal Resistance, Junction to Ambient great to				350	-CW	
	e Markino	g and Orderir	g Information			
		and the second second	Allow and Allowing and	and the second s	distance all the second second	
Device I	Marking 8	Device BSS138	Real Stop	Tape width 8mm	Quantity 3000 units	

KODE Foreise Bernoestuder Coperation

SERVICE Pro-Care

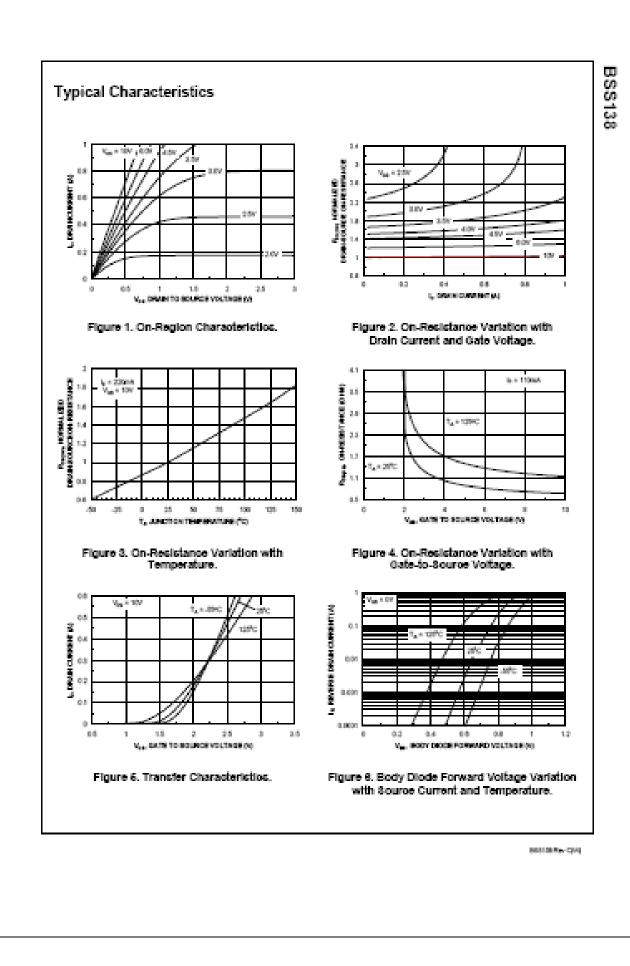
BSS138

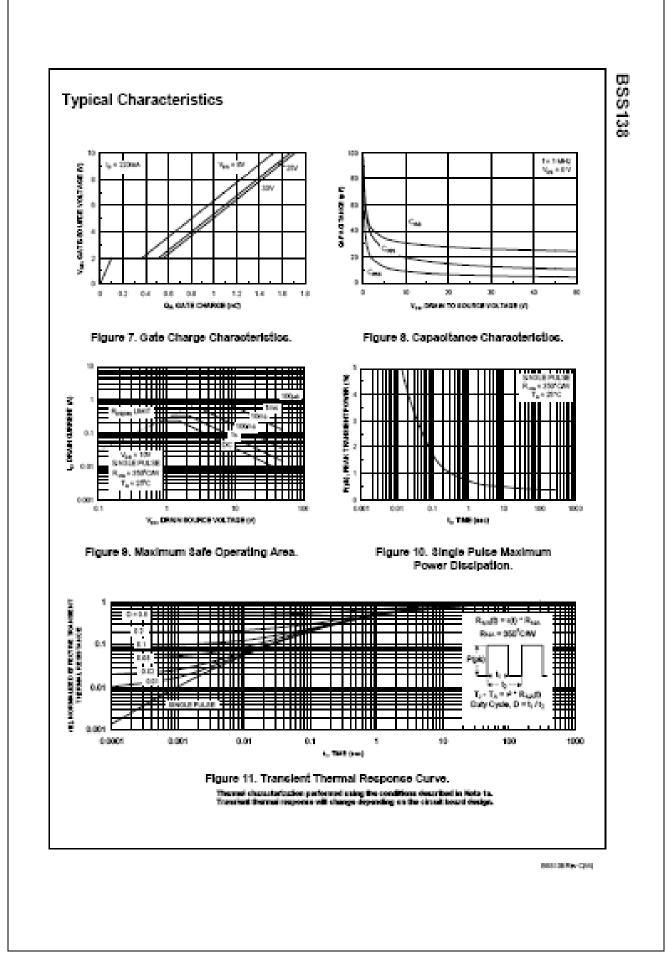
October 2005

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unite
off Char	aoteríctico		8		•	
N _{DES}	Drain-Source Breakdown Voltage	Vos = 0 V, Io = 250 µA	50			A.
<u>BVou</u> AT _a	Breakdown Voltage Temperature Coefficient	l ₀ = 250 μA,Referenced to 25°C		72		mWPC
588	Zero Gate Voltage Drain Current	Vos = 50 V, Vos = 0 V			0.5	đ,
		Vos = 50 V, Vos = 0 V T/= 125°C			- 6	ъA
		V ₀₅ = 30 V, V ₆₆ = 0 V			100	nA
265	Gate-Body Leakage.	Vos = ±20 V, Vos = 0 V			±100	nA.
On Char	acteristics peers	• • •				
(0804	Gale Threshold Voltage	V ₀₅ = V ₀₅ , I ₀ = 1 mA	0.8	1.3	1.5	V
α/ _{neme} ΔΤ _ε	Gate Threshold Voltage Temperature Coefficient	o = 1 mA,Referenced to 25°C		еф		nWPC
Cotore .	Static Drain-Source	V ₀₅ = 10 V, I ₀ = 0.22 A		0.7	3.5	Ω
	On-Resistance	Vos = 4.5 V, Ib = 0.22 A		1.0	6.0	
Dimi	On-State Drain Current	V _{ps} = 10 V, I _p = 0.22 A, T ₄ = 125°C V _{ps} = 10 V, V _{ps} = 5 V	0.2	1.1	5.8	A
	Forward Transconductance	Vos = 10V. lp = 0.22 A	0.12	0.5		8
24) 	Charaoteríctios	100 - 107, 10 - VALO	Self. Faile	1973 P		
зупанно Ха	Input Capacitance	V ₀₈ = 25 V, V ₀₈ = 0 V,		77	1	D ²²
rings L Fillers	Output Capacitance	V ₀₅ =25 V, V ₀₅ =0 V, f=10 MHz		12		3
ne Ne	Reverse Transfer Capacitance			8		di la
201 2	Gate Resistance	Vos = 15 mV, f = 1.0 MHz		0		
-		V05 - 10 MV, 1 - 1.0 MP2		8		
ere Switchin	g Charaoteristics (www.g Tum-On Dalay Time	Vm = 30 V. lp = 0.29 A.		2.6	5	129
ingene () H	Tum-On Rise Time	Vos = 10 V, Rom = 6 Ω		0	100	154
(ull)	Turn-Of Delay Time			20	38	114
0.0	Tum-Of Fall Time	4		7	14	158
	Total Gate Charge	Vm = 25 V. In = 0.22 A.		1.7	24	nC
ر به م	Gate-Source Charge	Vos = 10 V		0.1	4.4	nC
198 1	Gate-Drain Charge			0.4		nC
	ourse Diode Characteristics	and Manlaura Bailtean	<u> </u>			104
orain-80 I	Maximum Continuous Drain-Source			0.22	A	
e Ano	Drain-Source Diode Forward	Vos = 0 V. Is = 0.44 Annie 5		8.0	1.4	
res2	Voltase	And - 0.4" III - 0.44 (4066 2)		0.0	1.4	w.

BSS138

 R_{est} is the train of the produce to calls and calls to endow it that are instituted where the case the main of the produce is defined as the politic modeling surface of the during has. R_{eg} is guaranteed by decign where R_{est} is determined by the user's bound decign.


ř


 a) 350°CW when manifed on a minimum ped.

Scale 1 : 1 on letter stan paper

2. Puise Test: Poise Willing 300 µe, Duby Cycle < 3.0%

BERICE RIV CARE

