## nRF52810

Product Specification

## Key features

## Key features:

- $\quad$ 2.4 GHz transceiver
- -96 dBm sensitivity in Bluetooth ${ }^{\circledR}$ low energy mode
- Supported data rates: $1 \mathrm{Mbps}, 2 \mathrm{Mbps}$ Bluetooth ${ }^{\circledR}$ low energy mode
- $\quad-20$ to +4 dBm TX power, configurable in 4 dB steps
- On-chip balun (single-ended RF)
- $\quad 4.6 \mathrm{~mA}$ peak current in $\mathrm{TX}(0 \mathrm{dBm})$
- $\quad 4.6 \mathrm{~mA}$ peak current in RX
- RSSI (1 dB resolution)
- ARM $^{\circledR}$ Cortex ${ }^{\circledR}-\mathrm{M} 4$ 32-bit processor, 64 MHz
- 144 EEMBC CoreMark ${ }^{\circledR}$ score running from flash memory
- $\quad 34.4 \mu \mathrm{~A} / \mathrm{MHz}$ running from flash memory
- $\quad 32.8 \mu \mathrm{~A} / \mathrm{MHz}$ running from RAM
- Serial wire debug (SWD)
- Flexible power management
- $1.7 \mathrm{~V}-3.6 \mathrm{~V}$ supply voltage range
- Fully automatic LDO and DC/DC regulator system
- Fast wake-up using 64 MHz internal oscillator
- $\quad 0.3 \mu \mathrm{~A}$ at 3 V in System OFF mode, no RAM retention
- $\quad 0.5 \mu \mathrm{~A}$ at 3 V in System OFF mode with full 24 kB RAM retention
- $\quad 1.5 \mu \mathrm{~A}$ at 3 V in System ON mode, with full 24 kB RAM retention, wake on RTC
- 192 kB flash and 24 kB RAM
- Nordic SoftDevice ready
- Support for concurrent multi-protocol
- 12-bit, 200 ksps ADC - 8 configurable channels with programmable gain
- 64 level comparator
- Temperature sensor
- Up to 32 general purpose I/O pins
- 4-channel pulse width modulator (PWM) unit with EasyDMA
- Digital microphone interface (PDM)
- $3 \times 32$-bit timer with counter mode
- SPI master/slave with EasyDMA
- I2C compatible 2-wire master/slave
- UART (CTS/RTS) with EasyDMA
- Programmable peripheral interconnect (PPI)
- Quadrature decoder (QDEC)
- AES HW encryption with EasyDMA
- $2 x$ real-time counter (RTC)
- Single crystal operation
- Package variants
- QFN48 package, $6 \times 6 \mathrm{~mm}$
- QFN32 package, $5 \times 5 \mathrm{~mm}$


## Applications:

- Computer peripherals and I/O devices
- Mouse
- Keyboard
- Mobile HID
- CE remote controls
- Network processor
- Wearables
- Virtual reality headsets
- Health and medical
- Enterprise lighting
- Industrial
- Commercial
- Retail
- Beacons
- Connectivity device in multi-chip solutions


## Contents

Key features ..... ii
1 Revision history ..... 9
2 About this document ..... 10
2.1 Document naming and status ..... 10
2.2 Peripheral naming and abbreviations ..... 10
2.3 Register tables ..... 11
2.3.1 Fields and values ..... 11
2.4 Registers ..... 11
2.4.1 DUMMY ..... 11
3 Block diagram ..... 13
4 Core components ..... 14
4.1 CPU ..... 14
4.1.1 Electrical specification ..... 14
4.1.2 CPU and support module configuration ..... 14
4.2 Memory ..... 15
4.2.1 RAM - Random access memory ..... 16
4.2.2 Flash - Non-volatile memory ..... 16
4.2.3 Memory map ..... 16
4.2.4 Instantiation ..... 17
4.3 NVMC - Non-volatile memory controller ..... 18
4.3.1 Writing to flash ..... 18
4.3.2 Erasing a page in flash ..... 18
4.3.3 Writing to user information configuration registers (UICR) ..... 18
4.3.4 Erasing user information configuration registers (UICR) ..... 19
4.3.5 Erase all ..... 19
4.3.6 Registers ..... 19
4.3.7 Electrical specification ..... 21
4.4 FICR - Factory information configuration registers ..... 22
4.4.1 Registers ..... 22
4.5 UICR - User information configuration registers ..... 32
4.5.1 Registers ..... 32
4.6 EasyDMA ..... 48
4.6.1 EasyDMA array list ..... 49
4.7 AHB multilayer ..... 50
4.8 Debug ..... 50
4.8.1 DAP - Debug Access Port ..... 51
4.8.2 CTRL-AP - Control Access Port ..... 51
4.8.3 Debug interface mode ..... 53
4.8.4 Real-time debug ..... 54
5 Power and clock management ..... 55
5.1 Power management unit (PMU) ..... 55
5.2 Current consumption ..... 55
5.2.1 Electrical specification ..... 56
5.3 POWER - Power supply ..... 61
7.3 Reference circuitry ..... 468
7.3.1 Schematic QFAA QFN48 with internal LDO setup ..... 468
7.3.2 Schematic QFAA QFN48 with DC/DC regulator setup ..... 470
7.3.3 Schematic QCAA QFN32 with internal LDO setup ..... 471
7.3.4 Schematic QCAA QFN32 with DC/DC regulator setup ..... 472
7.3.5 PCB guidelines ..... 473
7.3.6 PCB layout example ..... 474
8 Recommended operating conditions ..... 476
9 Absolute maximum ratings ..... 477
10 Ordering information ..... 478
10.1 IC marking ..... 478
10.2 Box labels ..... 478
10.3 Order code ..... 479
10.4 Code ranges and values ..... 480
10.5 Product options ..... 481
11 Liability disclaimer. ..... 483

## 1 Revision history

| Date | Version | Description |
| :--- | :--- | :--- |
| September 2017 | 1.0 | First release |

## About this document

This product specification is organized into chapters based on the modules and peripherals that are available in this IC.

The peripheral descriptions are divided into separate sections that include the following information:

- A detailed functional description of the peripheral
- Register configuration for the peripheral
- Electrical specification tables, containing performance data which apply for the operating conditions described in Recommended operating conditions on page 476.


### 2.1 Document naming and status

Nordic uses three distinct names for this document, which are reflecting the maturity and the status of the document and its content.

| Document name | Description |
| :--- | :--- |
| Objective Product Specification (OPS) | Applies to document versions up to 0.7. <br> This product specification contains target <br> specifications for product development. |
| Preliminary Product Specification (PPS) | Applies to document versions 0.7 and up to 1.0. <br> This product specification contains preliminary <br> data. Supplementary data may be published from <br> Nordic Semiconductor ASA later. |
| Product Specification (PS) | Applies to document versions 1.0 and higher. <br> This product specification contains final product <br> specifications. Nordic Semiconductor ASA reserves <br> the right to make changes at any time without <br> notice in order to improve design and supply the <br> best possible product. |

Table 1: Defined document names

### 2.2 Peripheral naming and abbreviations

Every peripheral has a unique capitalized name or an abbreviation of its name, e.g. TIMER, used for identification and reference. This name is used in chapter headings and references, and it will appear in the ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontroller Software Interface Standard (CMSIS) hardware abstraction layer to identify the peripheral.

The peripheral instance name, which is different from the peripheral name, is constructed using the peripheral name followed by a numbered postfix, starting with 0 , for example, TIMERO. A postfix is normally only used if a peripheral can be instantiated more than once. The peripheral instance name is also used in the CMSIS to identify the peripheral instance.

### 2.3 Register tables

Individual registers are described using register tables. These tables are built up of two sections. The first three colored rows describe the position and size of the different fields in the register. The following rows describe the fields in more detail.

### 2.3.1 Fields and values

The Id (Field Id) row specifies the bits that belong to the different fields in the register. If a field has enumerated values, then every value will be identified with a unique value id in the Value Id column.

A blank space means that the field is reserved and read as undefined, and it also must be written as 0 to secure forward compatibility. If a register is divided into more than one field, a unique field name is specified for each field in the Field column. The Value Id may be omitted in the single-bit bit fields when values can be substituted with a Boolean type enumerator range, e.g. true/false, disable(d)/enable(d), on/ off, and so on.

Values are usually provided as decimal or hexadecimal. Hexadecimal values have a $0 \times$ prefix, decimal values have no prefix.

The Value column can be populated in the following ways:

- Individual enumerated values, for example 1, 3, 9.
- Range of values, e.g. [0..4], indicating all values from and including 0 and 4.
- Implicit values. If no values are indicated in the Value column, all bit combinations are supported, or alternatively the field's translation and limitations are described in the text instead.

If two or more fields are closely related, the Value Id, Value, and Description may be omitted for all but the first field. Subsequent fields will indicate inheritance with '...'.

A feature marked Deprecated should not be used for new designs.

### 2.4 Registers

| Register | Offset | Description |
| :--- | :--- | :--- |
| DUMMY | $0 \times 514$ | Example of a register controlling a dummy feature |

Table 2: Register Overview

### 2.4.1 DUMMY

Address offset: 0x514
Example of a register controlling a dummy feature

| Bit number |  | 3130292827262524232221201 |  |  |  |  | 8171 | 1615 | 141312 | 1110 | 9 | 8 | 7 | 6 | 5 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  | D D D |  |  | c C C |  |  |  |  | B |  |  |  |  |  | A |
| Reset 0x00050002 |  | 0000 | 0 | 000 | $0000$ <br> Description | 1 | 10 | 10 | 000 | 0 | 0 | 0 | 0 | 0 | 0 |  |  | 0 |
| Id RW Field | Value Id | Value |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW FIELD_A |  |  |  |  | Example of a field with several enumerated values |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Disabled | 0 |  |  | The example feature is disabled |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | NormalMode | 1 |  |  | The example feature is enabled in normal mode |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ExtendedMode | 2 |  |  | The example feature is enabled along with extra functionality |  |  |  |  |  |  |  |  |  |  |  |  |  |



## 3 Block diagram

This block diagram illustrates the overall system. Arrows with white heads indicate signals that share physical pins with other signals.


Figure 1: Block diagram

## 4 Core components

### 4.1 CPU

The ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}-\mathrm{M} 4$ processor has a 32 -bit instruction set (Thumb ${ }^{\circledR}-2$ technology) that implements a superset of 16 and 32-bit instructions to maximize code density and performance.

This processor implements several features that enable energy-efficient arithmetic and high-performance signal processing including:

- Digital signal processing (DSP) instructions
- Single-cycle multiply and accumulate (MAC) instructions
- Hardware divide
- 8 and 16 -bit single instruction multiple data (SIMD) instructions

The ARM Cortex Microcontroller Software Interface Standard (CMSIS) hardware abstraction layer for the ARM Cortex processor series is implemented and available for the M4 CPU.

Real-time execution is highly deterministic in thread mode, to and from sleep modes, and when handling events at configurable priority levels via the nested vectored interrupt controller (NVIC).

Executing code from flash will have a wait state penalty on the nRF52 Series. The section Electrical specification on page 14 shows CPU performance parameters including wait states in different modes, CPU current and efficiency, and processing power and efficiency based on the CoreMark ${ }^{\circledR}$ benchmark.

The ARM System Timer (SysTick) is present on the device. The SysTick's clock will only tick when the CPU is running or when the system is in debug interface mode.

### 4.1.1 Electrical specification

### 4.1.1.1 CPU performance

The CPU clock speed is 64 MHz . Current and efficiency data is taken when in System ON and the CPU is executing the CoreMark ${ }^{\circledR}$ benchmark. It includes power regulator and clock base currents. All other blocks are IDLE.

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{W}_{\text {FLASH }}$ | CPU wait states, running from flash | 0 |  | 2 |  |
| $W_{\text {RAM }}$ | CPU wait states, running from RAM |  |  | 0 |  |
| CM FLASH | CoreMark ${ }^{1}$, running from flash |  | 144 |  | CoreMark |
| CM FLASH/MHz | CoreMark per MHz, running from flash |  | 2.25 |  | Corel <br> MHz |
| CM $\mathrm{FLASH} / \mathrm{mA}$ | CoreMark per mA, running from flash, DCDC 3 V |  | 60 |  | CoreMark/ mA |

### 4.1.2 CPU and support module configuration

The ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}-\mathrm{M} 4$ processor has a number of CPU options and support modules implemented on the device.

[^0]| Option / Module | Description | Implemented |
| :--- | :--- | :--- |
| Core options |  |  |
| NVIC | Nested vector interrupt controller | 30 vectors |
| PRIORITIES | Priority bits | 3 |
| WIC | Wakeup interrupt controller | NO |
| Endianness | Memory system endianness | Little endian |
| Bit-banding | Bit banded memory | NO |
| DWT | Data watchpoint and trace | NO |
| SySTick | System tick timer | YES |
| Modules | Memory protection unit |  |
| MPU | Floating-point unit | YES |
| FPU | Debug access port | NO |
| DAP | Embedded trace macrocell | YES |
| ETM | Instrumentation trace macrocell | NO |
| ITM | Trace port interface unit | NO |
| TPIU | Embedded trace buffer | NO |
| ETB | Flash patch and breakpoint unit | NO |
| FPB | AMBAAHB trace macrocell | YES |
| HTM |  | NO |

### 4.2 Memory

The nRF52810 contains flash and RAM that can be used for code and data storage.
The amount of RAM and flash will vary depending on variant, see Memory variants on page 15.

| Device name | RAM | Flash | Comments |
| :--- | :--- | :--- | :--- |
| nRF52810-QFAA | 24 kB | 192 kB |  |

Table 3: Memory variants
The CPU and the EasyDMA can access memory via the AHB multilayer interconnect. The CPU is also able to access peripherals via the AHB multilayer interconnect, as illustrated in Memory layout on page 16.


Figure 2: Memory layout
See AHB multilayer on page 50 and EasyDMA on page 48 for more information about the AHB multilayer interconnect and the EasyDMA.

The same physical RAM is mapped to both the Data RAM region and the Code RAM region. It is up to the application to partition the RAM within these regions so that one does not corrupt the other.

### 4.2.1 RAM - Random access memory

The RAM interface is divided into multiple RAM AHB slaves.
Each RAM AHB slave is connected to two 4-kilobyte RAM sections, see Section 0 and Section 1 in Memory layout on page 16.

Each of the RAM sections have separate power control for System ON and System OFF mode operation, which is configured via RAM register (see the POWER - Power supply on page 61).

### 4.2.2 Flash - Non-volatile memory

The flash can be read an unlimited number of times by the CPU, but it has restrictions on the number of times it can be written and erased, and also on how it can be written.

Writing to flash is managed by the non-volatile memory controller (NVMC), see NVMC - Non-volatile memory controller on page 18.

The flash is divided into multiple 4 kB pages that can be accessed by the CPU via both the ICODE and DCODE buses as shown in, Memory layout on page 16. Each page is divided into 8 blocks.

### 4.2.3 Memory map

The complete memory map is shown in Memory map on page 17. As described in Memory on page 15, Code RAM and Data RAM are the same physical RAM.


Figure 3: Memory map

### 4.2.4 Instantiation

| ID | Base Address | Peripheral | Instance | Description |
| :--- | :--- | :--- | :--- | :--- |
| 0 | $0 \times 40000000$ | CLOCK | CLOCK | Clock control |
| 0 | $0 \times 40000000$ | BPROT | BPROT | Block protect |
| 0 | $0 \times 40000000$ | POWER | POWER | Power control |
| 1 | $0 \times 40001000$ | RADIO | RADIO | 2.4 GHz radio |
| 2 | $0 \times 40002000$ | UARTE | UARTEO | Universal asynchronous receiver/transmitter with EasyDMA |
| 3 | $0 \times 40003000$ | TWIM | TWIMO | Two-wire interface master |
| 3 | $0 \times 40003000$ | TWIS | TWISO | Two-wire interface slave |
| 4 | $0 \times 40004000$ | SPIS | SPISO | SPI slave |
| 4 | $0 \times 40004000$ | SPIM | SPIMO | SPI master |
| 6 | $0 \times 40006000$ | GPIOTE | GPIOTE | GPIO tasks and events |
| 7 | $0 \times 40007000$ | SAADC | SAADC | Analog-to-digital converter |
| 8 | $0 \times 40008000$ | TIMER | TIMERO | Timer 0 |
| 9 | $0 \times 40009000$ | TIMER | TIMER1 | Timer 1 |
| 10 | $0 \times 4000$ A000 | TIMER | TIMER2 | Timer 2 |
| 11 | $0 \times 4000$ B000 | RTC | RTCO | Real-time counter 0 |
| 12 | $0 \times 4000 C 000$ | TEMP | TEMP | Temperature sensor |
| 13 | $0 \times 4000$ DO000 | RNG | RNG | Random number generator |
| 14 | $0 \times 4000$ E000 | ECB | ECB | AES Electronic Codebook (ECB) mode block encryption |
| 15 | $0 \times 4000 F 000$ | AAR | AAR | Accelerated address resolver |
| 15 | $0 \times 4000$ FO00 | CCM | CCM | AES CCM mode encryption |
| 16 | $0 \times 40010000$ | WDT | WTC | WDT |


| ID | Base Address | Peripheral | Instance | Description |
| :--- | :--- | :--- | :--- | :--- |
| 21 | $0 \times 40015000$ | EGU | EGU1 | Event generator unit 1 |
| 21 | $0 \times 40015000$ | SWI | SWI1 | Software interrupt 1 |
| 22 | $0 \times 40016000$ | SWI | SWI2 | Software interrupt 2 |
| 23 | $0 \times 40017000$ | SWI | SWI3 | Software interrupt 3 |
| 24 | $0 \times 40018000$ | SWI | SWI4 | Software interrupt 4 |
| 25 | $0 \times 40019000$ | SWI | SWI5 | Software interrupt 5 |
| 28 | $0 \times 4001$ C000 | PWM | PWMO | Pulse-width modulation unit 0 |
| 29 | $0 \times 4001$ D000 | PDM | NVMC | Non-volatile memory controller |
| 30 | $0 \times 40015000$ | NVMC | PPI | Programmable peripheral interconnect |
| 31 | $0 \times 4001$ F000 | PPI | PO | Factory information configuration purpose input and output |
| 0 | $0 \times 50000000$ | GPIO | FICR | User information configuration |
| N/A | $0 \times 10000000$ | FICR | UICR |  |
| N/A | $0 \times 10001000$ | UICR |  |  |

Table 4: Instantiation table

### 4.3 NVMC — Non-volatile memory controller

The non-volatile memory controller (NVMC) is used for writing and erasing of the internal flash memory and the UICR (user information configuration registers).

The CONFIG register is used to enable the NVMC for writing (CONFIG.WEN) and erasing (CONFIG.EEN), see CONFIG on page 19. The user must make sure that writing and erasing are not enabled at the same time. Having both enabled at the same time may result in unpredictable behavior.

### 4.3.1 Writing to flash

When writing is enabled, full 32-bit words are written to word-aligned addresses in flash.
As illustrated in Memory on page 15, the flash is divided into multiple pages that in turn are divided into multiple blocks. The same block in flash can only be written $n_{\text {WRITE }}$ number of times before an erase must be performed using ERASEPAGE or ERASEALL. See the memory size and organization in Memory on page 15 for block size.

The NVMC is only able to write 0 to bits in the flash that are erased (set to 1). It cannot rewrite a bit back to 1 . Only full 32-bit words can be written to flash using the NVMC interface. To write less than 32 bits, write the data as a full 32 -bit word and set all the bits that should remain unchanged in the word to 1. Note that the restriction on the number of writes ( $\mathrm{n}_{\text {WRITE }}$ ) still applies in this case.
Only word-aligned writes are allowed. Byte or half-word-aligned writes will result in a hard fault.
The time it takes to write a word to flash is specified by $t_{\text {WRITE. }}$. The CPU is halted if the CPU executes code from the flash while the NVMC is writing to the flash.

### 4.3.2 Erasing a page in flash

When erase is enabled, the flash memory can be erased page by page using the ERASEPAGE register.
After erasing a flash page, all bits in the page are set to 1 . The time it takes to erase a page is specified by $t_{\text {ERASEPAGE. }}$ The CPU is halted if the CPU executes code from the flash while the NVMC is writing to the flash.

### 4.3.3 Writing to user information configuration registers (UICR)

User information configuration registers (UICR) are written in the same way as flash. After UICR has been written, the new UICR configuration will take effect after a reset.

UICR can only be written $n_{\text {WRITE }}$ number of times before an erase must be performed using ERASEUICR or ERASEALL. The time it takes to write a word to UICR is specified by $t_{\text {WRITE. }}$. The CPU is halted if the CPU executes code from the flash while the NVMC is writing to the UICR.

### 4.3.4 Erasing user information configuration registers (UICR)

When erase is enabled, UICR can be erased using the ERASEUICR register.
After erasing UICR all bits in UICR are set to 1 . The time it takes to erase UICR is specified by $t_{\text {ERASEPAGE }}$. The CPU is halted if the CPU executes code from the flash while the NVMC performs the erase operation.

### 4.3.5 Erase all

When erase is enabled, flash and UICR can be erased completely in one operation by using the ERASEALL register. ERASEALL will not erase the factory information configuration registers (FICR).

The time it takes to perform an ERASEALL command is specified by $\mathrm{t}_{\text {ERASEALL }}$ The CPU is halted if the CPU executes code from the flash while the NVMC performs the erase operation.

### 4.3.6 Registers

| Base address | Peripheral | Instance | Description | Configuration |
| :--- | :--- | :--- | :--- | :--- |
| $0 \times 4001 E 000$ | NVMC | NVMC | Non-volatile memory controller |  |

Table 5: Instances

| Register | Offset | Description |  |
| :--- | :--- | :--- | :--- |
| READY | $0 \times 400$ | Ready flag |  |
| CONFIG | $0 \times 504$ | Configuration register |  |
| ERASEPCR1 | $0 \times 508$ | Register for erasing a page in code area. Equivalent to ERASEPAGE. |  |
| ERASEPAGE | $0 \times 508$ | Register for erasing a page in code area |  |
| ERASEALL | $0 \times 50 C$ | Register for erasing all non-volatile user memory |  |
| ERASEPCRO | $0 \times 510$ | Register for erasing a page in code area. Equivalent to ERASEPAGE. |  |
| ERASEUICR | $0 \times 514$ | Register for erasing user information configuration registers | Deprecated |

Table 6: Register Overview

### 4.3.6.1 READY

Address offset: 0x400
Ready flag


### 4.3.6.2 CONFIG

Address offset: 0x504
Configuration register


### 4.3.6.3 ERASEPCR1 ( Deprecated )

## Address offset: 0x508

Register for erasing a page in code area. Equivalent to ERASEPAGE.
$\left.\begin{array}{l|llllllllllllllllllllllllllllllll}\hline \text { Bit number } & & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right)$

A RW ERASEPCR1
Register for erasing a page in code area. Equivalent to ERASEPAGE.

### 4.3.6.4 ERASEPAGE

Address offset: 0x508
Register for erasing a page in code area

| Bit number |  | 3130292827 | 262524 | 2322212019 | 18171615141312 | 1110 | 8 | 7 | 6 | 5 | 3 | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A A | A A A | A A A A A | A A A A A A | A A | A | A | A | A | A | A |  |
| Reset 0x00000000 |  | 00000 | 000 | 00000 | 0000000 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |
| A RW ERASEPAGE |  |  |  | Register for starting erase of a page in code area. |  |  |  |  |  |  |  |  |  |
|  |  |  |  | The value is the of first word in using CONFIG. to erase pages undesirable be | e address to the page page). Note that the WEN before the page that are outside the cod havior, e.g. the wrong | to be e erase $m$ can be code are page |  | $\mathrm{d}(\mathrm{ad}$ |  |  |  |  |  |

### 4.3.6.5 ERASEALL

## Address offset: 0x50C

Register for erasing all non-volatile user memory


### 4.3.6.6 ERASEPCRO ( Deprecated )

## Address offset: 0x510

Register for erasing a page in code area. Equivalent to ERASEPAGE.

| Bit number |  | 3130 | 02928 | 27 | 26 | 252 | 2423 | 322 | 221 | 2120 | 19 | 18 | 17 | 16 | 15 | 14 | 1312 | 211 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A | A A | A A | A A | A A | A A | A | A | A | A | A | A | A A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0x00000000 |  | 00 | 00 | 0 | 0 | 00 | 00 | 00 | 00 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 |
| Id RW Field | Value Id | Value |  |  |  |  |  | scri | cripti | tion |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW ERASEPCRO
Register for starting erase of a page in code area. Equivalent to ERASEPAGE.

### 4.3.6.7 ERASEUICR

## Address offset: 0x514

Register for erasing user information configuration registers


### 4.3.7 Electrical specification

### 4.3.7.1 Flash programming

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{n}_{\text {WRIIte,block }}$ | Number of writes allowed in a block before erase |  |  |  |  |
| $n_{\text {WRITE }}$ | Number of times an address can be written before erase ${ }^{2}$ |  |  |  |  |
| $\mathrm{n}_{\text {ENDURANCE }}$ | Write/erase cycles |  |  |  |  |
| $t_{\text {WRITE }}$ | Time to write one 32-bit word |  |  |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {ERASEPAGE }}$ | Time to erase one page |  |  |  | ms |
| $\mathrm{t}_{\text {ERASEALL }}$ | Time to erase all flash |  |  |  | ms |

[^1]
### 4.4 FICR - Factory information configuration registers

Factory information configuration registers (FICR) are pre-programmed in factory and cannot be erased by the user. These registers contain chip-specific information and configuration.

### 4.4.1 Registers

| Base address | Peripheral | Instance | Description | Configuration |
| :--- | :--- | :--- | :--- | :--- |
| $0 \times 10000000$ | FICR | FICR | Factory information configuration |  |

Table 7: Instances

| Register | Offset | Description |  |
| :---: | :---: | :---: | :---: |
| CODEPAGESIZE | 0x010 | Code memory page size |  |
| CODESIZE | 0x014 | Code memory size |  |
| DEVICEID[0] | 0x060 | Device identifier |  |
| DEVICEID[1] | 0x064 | Device identifier |  |
| ER[0] | 0x080 | Encryption root, word 0 |  |
| ER[1] | 0x084 | Encryption root, word 1 |  |
| ER[2] | 0x088 | Encryption root, word 2 |  |
| ER[3] | 0x08C | Encryption root, word 3 |  |
| IR[0] | 0x090 | Identity root, word 0 |  |
| $\mathrm{IR}[1]$ | 0x094 | Identity root, word 1 |  |
| $\mathrm{IR}[2]$ | 0x098 | Identity root, word 2 |  |
| IR[3] | 0x09C | Identity root, word 3 |  |
| DEVICEADDRTYPE | 0x0A0 | Device address type |  |
| DEVICEADDR[0] | 0x0A4 | Device address 0 |  |
| DEVICEADDR[1] | 0x0A8 | Device address 1 |  |
| INFO.PART | 0x100 | Part code |  |
| INFO.VARIANT | 0x104 | Part variant, hardware version and production configuration |  |
| INFO.PACKAGE | 0x108 | Package option |  |
| INFO.RAM | 0x10C | RAM variant |  |
| INFO.FLASH | $0 \times 110$ | Flash variant |  |
|  | $0 \times 114$ |  | Reserved |
|  | $0 \times 118$ |  | Reserved |
|  | 0x11C |  | Reserved |
| TEMP.AO | 0x404 | Slope definition AO |  |
| TEMP.A1 | 0x408 | Slope definition A1 |  |
| TEMP.A2 | 0x40C | Slope definition A2 |  |
| TEMP.A3 | 0x410 | Slope definition A3 |  |
| TEMP.A4 | 0x414 | Slope definition A4 |  |
| TEMP.A5 | 0x418 | Slope definition A5 |  |
| TEMP.BO | 0x41C | Y-intercept BO |  |
| TEMP.B1 | 0x420 | Y-intercept B1 |  |
| TEMP.B2 | 0x424 | Y-intercept B2 |  |
| TEMP.B3 | 0x428 | Y-intercept B3 |  |
| TEMP.B4 | 0x42C | Y-intercept B4 |  |
| TEMP.B5 | 0x430 | Y-intercept B5 |  |
| TEMP.TO | 0x434 | Segment end T0 |  |
| TEMP.T1 | 0x438 | Segment end T1 |  |
| TEMP.T2 | 0x43C | Segment end T2 |  |
| TEMP.T3 | 0x440 | Segment end T3 |  |


| Register | Offset | Description |
| :--- | :--- | :--- |
| TEMP.T4 | $0 \times 444$ | Segment end T4 |

Table 8: Register Overview

### 4.4.1.1 CODEPAGESIZE

## Address offset: 0x010

Code memory page size

| Bit number | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Id | A | A A A A A A A A A A A A A A A A A A A |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A R CODEPAGESIZE
Code memory page size

### 4.4.1.2 CODESIZE

Address offset: 0x014
Code memory size


### 4.4.1.3 DEVICEID[0]

Address offset: 0x060
Device identifier


### 4.4.1.4 DEVICEID[1]

Address offset: 0x064
Device identifier


### 4.4.1.5 ER[0]

Address offset: 0x080
Encryption root, word 0


### 4.4.1.6 ER[1]

Address offset: 0x084
Encryption root, word 1

A R ER Encryption root, word n

### 4.4.1.7 ER[2]

Address offset: 0x088
Encryption root, word 2

| Bit number |  | 31302928 | 27262524 | 23222120 | 19181716 | 15141312 | 11 | 109 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A A | A A A A | A A A A | A A A A | A | A A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 1111 | 1111 | 1111 | 1111 | 1111 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |
| A R ER |  |  |  | Encryption ro | root, word n |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.8 ER[3]

Address offset: 0x08C
Encryption root, word 3


### 4.4.1.9 IR[0]

Address offset: 0x090
Identity root, word 0

| Bit number |  | 3130 | 3029 | 282 | 2726 | 262524 | 23 | 22 | 212 | 19 |  | 17 | 161 | 514 | 413 | 21 | 110 | 9 | 8 | 7 | 6 | 5 | 4 |  | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A | A A | A A | A A A | A | A | A A | A | A | A | A | A A | A A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 11 | 11 | 11 | 11 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 11 | 11 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 111 |
| Id RW Field | Value Id | Value |  |  |  |  |  | escrip | ription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A R IR Identity root, word n

### 4.4.1.10 IR[1]

Address offset: 0x094
Identity root, word 1

| Bit number |  | 3130292827 | 827262524 | 23222120 | 19181716 | 15 | 141312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A A | A A A A | A A A A | A | A A A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 1111 | 1111 | 1111 | 1111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A R IR |  |  |  | Identity root | t, word n |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.11 IR[2]

Address offset: 0x098
Identity root, word 2


### 4.4.1.12 IR[3]

## Address offset: 0x09C

Identity root, word 3

| Bit number |  | 3130292827262524232221201918171615 |  |  |  |  | 141312 | 11 | 109 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A | A A A A | A A A A | A | A A A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 11111 | 111 | 1111 | 1111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A R IR |  |  |  | Identity root, | t, word n |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.13 DEVICEADDRTYPE

## Address offset: 0x0A0

Device address type

|  | number |  |  | 3130292827262524 |  | 232221201918171615141312111098 |  |  |  |  |  |  |  | 7 | 65 |  | 3 |  |  | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  |
| Reset 0xFFFFFFFF |  |  |  | 11111 | 1111 |  |  |  |  |  |  |  |  | 1111 | 1111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |  | 1 |
| Id |  | Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A | R | DEVICEADDRTYPE |  |  |  | Device address type |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Public | 0 |  | Public addre |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Random | 1 |  | Random add | dress |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.14 DEVICEADDR[0]

Address offset: 0x0A4
Device address 0


### 4.4.1.15 DEVICEADDR[1]

Address offset: 0x0A8

## Device address 1

| Bit number |  |  |  | 31302928272625242322212019 |  |  |  | 18171615 | 141312 | 1110 | 9 | 8 | 7 | 6 | 5 |  | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  | A A A A | A | A A A | A A A A A | A A A A | A A A | A | A | A | A | A | A |  | A | A A |
|  | t 0xF | FFFFFFF |  | 11111 | 1 | 111 | 111111 | 1111 | 111 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 11 |
| d | RW | Field | Value Id | Value |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |
| A | R DEVICEADDR |  |  |  |  |  | 48 bit device address |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | DEVICEADDR[0] the device addr significant bits DEVICEADDR[1 | ] contains th dress. DEVICE of the devic 1] are used. | he least si EADDR[1] e address. | ignific cont Only |  | bit the [ | of m 5:0 |  |  |  |  |  |

### 4.4.1.16 INFO.PART

Address offset: 0x100
Part code


### 4.4.1.17 INFO.VARIANT

Address offset: 0x104

## Part variant, hardware version and production configuration



Address offset: $0 \times 108$
Package option


### 4.4.1.19 INFO.RAM

Address offset: 0x10C
RAM variant


### 4.4.1.20 INFO.FLASH

Address offset: 0x110
Flash variant


### 4.4.1.21 TEMP.AO

Address offset: 0x404
Slope definition AO


Address offset: 0x408
Slope definition A1

| Bit number |  | 3130292827 | 27262524 | 23222120 | 19181716 | 15 | 141312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0x00000343 |  | 0000 | 0000 | 0000 | 0000 | 0 | 000 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A R A |  |  |  | A (slope defi | finition) regist | ster |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.23 TEMP.A2

Address offset: $0 \times 40 \mathrm{C}$
Slope definition A2

| Id | umb |  |  | 31302928 |  |  |  | 7262524 |  |  | 23 | 22212019 |  |  |  | 181716 |  |  | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | A | A | A | A | A | A | A | A | A | A | A | A |
|  | t $0 \times 0$ | 00003 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |  | 1 |
| Id | RW | Field | Value Id | Value |  |  |  |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | R |  |  | efinition) register |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.24 TEMP.A3

## Address offset: 0x410

Slope definition A3

| Bit number |  | 31302928 |  | 262524 |  | 222120 |  | 181716 |  | 141312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  | A | A | A | A | A | A | A | A | A | A |  |
| Reset 0x00000400 |  | 0000 | 0 | 000 | 0 | 000 | 0 | 000 | 0 | 000 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Id RW Field | Value Id | Value |  |  |  | escription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A R A
A (slope definition) register

### 4.4.1.25 TEMP.A4

Address offset: 0x414
Slope definition A4

| Bit number |  | 313029282726252423222120 |  |  | 191817161514131211 |  |  | 10 | 9 | 8 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  | A | A | A | A | A | A | A | A | A | A A |
| Reset 0x00000452 |  | 0000 | 0000 | 0000 | 0000 | 0000 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 10 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |
| A R A |  |  |  | A (slope defin | finition) regist |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.26 TEMP.A5

Address offset: 0x418
Slope definition A5


## Address offset: 0x41C

Y-intercept BO


### 4.4.1.28 TEMP.B1

Address offset: 0x420
Y-intercept B1

| Bit number |  |  | 3130292827262524 |  | 23222120 | 1918171615 |  | 141312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  | A A | A | A | A | A | A | A | A | A | A | A | A A |
|  | ex00003 |  | 00000000 |  | 0000 | 000 | 0 | 01 | 1 | 11 |  | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 00 |
| Id | RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | R B |  |  |  | B (y-intercep |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.29 TEMP.B2

Address offset: 0x424

## Y-intercept B2



### 4.4.1.30 TEMP.B3

Address offset: 0x428
Y-intercept B3


Address offset: 0x42C
Y-intercept B4


### 4.4.1.32 TEMP.B5

Address offset: 0x430

## Y-intercept B5

| Id | umb |  |  | 313 | 302 | 928 | 82 | 26 | 625 |  | 23 | 322 | 22120 | 19 |  | 81716 | 15 | 514 | 413 | 312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | A | A | A | A | A | A | A | A | A | A | A | A | A |
| Reset 0x00003E10 |  |  |  |  | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 00 | 0 |  | 00 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| Id | RW | Field | Value Id | Value |  |  |  |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A | R | B |  |  |  |  |  |  |  |  |  | (y-i | -intercep | pt) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.33 TEMP.TO

Address offset: 0x434

## Segment end TO



A R T
T (segment end) register

### 4.4.1.34 TEMP.T1

Address offset: 0x438

## Segment end T1

| Bit number |  | 31302928 | 27262524 | 23222120 |  | 181716 |  | 141312 | 11 | 10 |  |  | 7 | 6 | 5 | 4 | 3 | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  | A | A | A | A | A | A | A A |
| Reset 0x00000000 |  | 0000 | 0000 | 0000 | 0 | 000 | 0 | 000 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 00 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A R T |  |  |  | T (segment | end | d) register |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.4.1.35 TEMP.T2

Address offset: 0x43C
Segment end T2


## Address offset: 0x440

Segment end T3


### 4.4.1.37 TEMP.T4

## Address offset: 0x444

## Segment end T4

| Bit number |  | 31302928 | 27262524 | 23222120 |  | 181716 | 15 | 141312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  | A | A | A | A | A | A | A A |
| Reset 0x00000050 |  | 000 | 0000 | 0000 | 0 | 00 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A R T |  |  |  | T (segment | end | d) register |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5 UICR — User information configuration registers

The user information configuration registers (UICRs) are non-volatile memory (NVM) registers for configuring user specific settings.

For information on writing UICR registers, see the NVMC - Non-volatile memory controller on page 18 and Memory on page 15 chapters.

### 4.5.1 Registers

| Base address | Peripheral | Instance | Description | Configuration |
| :--- | :--- | :--- | :--- | :--- |
| $0 \times 10001000$ | UICR | UICR | User information configuration |  |

Table 9: Instances

| Register | Offset | Description |  |
| :---: | :---: | :---: | :---: |
|  | 0x000 |  | Reserved |
|  | 0x004 |  | Reserved |
|  | 0x008 |  | Reserved |
|  | 0x010 |  | Reserved |
| NRFFW[0] | 0x014 | Reserved for Nordic firmware design |  |
| NRFFW[1] | 0x018 | Reserved for Nordic firmware design |  |
| NRFFW[2] | 0x01C | Reserved for Nordic firmware design |  |
| NRFFW[3] | 0x020 | Reserved for Nordic firmware design |  |
| NRFFW[4] | 0x024 | Reserved for Nordic firmware design |  |
| NRFFW[5] | 0x028 | Reserved for Nordic firmware design |  |
| NRFFW[6] | 0x02C | Reserved for Nordic firmware design |  |
| NRFFW[7] | 0x030 | Reserved for Nordic firmware design |  |
| NRFFW[8] | 0x034 | Reserved for Nordic firmware design |  |
| NRFFW[9] | 0x038 | Reserved for Nordic firmware design |  |
| NRFFW[10] | 0x03C | Reserved for Nordic firmware design |  |
| NRFFW[11] | 0x040 | Reserved for Nordic firmware design |  |
| NRFFW[12] | 0x044 | Reserved for Nordic firmware design |  |
| NRFFW[13] | 0x048 | Reserved for Nordic firmware design |  |
| NRFFW[14] | 0x04C | Reserved for Nordic firmware design |  |
| NRFHW[0] | 0x050 | Reserved for Nordic hardware design |  |
| NRFHW[1] | 0x054 | Reserved for Nordic hardware design |  |
| NRFHW[2] | 0x058 | Reserved for Nordic hardware design |  |
| NRFHW[3] | 0x05C | Reserved for Nordic hardware design |  |
| NRFHW[4] | 0x060 | Reserved for Nordic hardware design |  |


| Register | Offset | Description |
| :---: | :---: | :---: |
| NRFHW[5] | 0x064 | Reserved for Nordic hardware design |
| NRFHW[6] | 0x068 | Reserved for Nordic hardware design |
| NRFHW[7] | 0x06C | Reserved for Nordic hardware design |
| NRFHW[8] | 0x070 | Reserved for Nordic hardware design |
| NRFHW[9] | 0x074 | Reserved for Nordic hardware design |
| NRFHW[10] | 0x078 | Reserved for Nordic hardware design |
| NRFHW[11] | 0x07C | Reserved for Nordic hardware design |
| CUSTOMER[0] | 0x080 | Reserved for customer |
| CUSTOMER[1] | 0x084 | Reserved for customer |
| CUSTOMER[2] | $0 \times 088$ | Reserved for customer |
| CUSTOMER[3] | 0x08C | Reserved for customer |
| CUSTOMER[4] | 0x090 | Reserved for customer |
| CUSTOMER[5] | 0x094 | Reserved for customer |
| CUSTOMER[6] | 0x098 | Reserved for customer |
| CUSTOMER[7] | 0x09C | Reserved for customer |
| CUSTOMER[8] | 0xOAO | Reserved for customer |
| CUSTOMER[9] | 0x0A4 | Reserved for customer |
| CUSTOMER[10] | 0x0A8 | Reserved for customer |
| CUSTOMER[11] | 0x0AC | Reserved for customer |
| CUSTOMER[12] | 0xOBO | Reserved for customer |
| CUSTOMER[13] | 0x0B4 | Reserved for customer |
| CUSTOMER[14] | 0x0B8 | Reserved for customer |
| CUSTOMER[15] | 0xOBC | Reserved for customer |
| CUSTOMER[16] | 0x0C0 | Reserved for customer |
| CUSTOMER[17] | 0x0C4 | Reserved for customer |
| CUSTOMER[18] | 0x0C8 | Reserved for customer |
| CUSTOMER[19] | 0xOCC | Reserved for customer |
| CUSTOMER[20] | 0x0D0 | Reserved for customer |
| CUSTOMER[21] | 0x0D4 | Reserved for customer |
| CUSTOMER[22] | 0x0D8 | Reserved for customer |
| CUSTOMER[23] | 0x0DC | Reserved for customer |
| CUSTOMER[24] | OxOEO | Reserved for customer |
| CUSTOMER[25] | 0x0E4 | Reserved for customer |
| CUSTOMER[26] | 0x0E8 | Reserved for customer |
| CUSTOMER[27] | OxOEC | Reserved for customer |
| CUSTOMER[28] | 0x0FO | Reserved for customer |
| CUSTOMER[29] | 0x0F4 | Reserved for customer |
| CUSTOMER[30] | 0x0F8 | Reserved for customer |
| CUSTOMER[31] | 0x0FC | Reserved for customer |
| PSELRESET[0] | 0x200 | Mapping of the nRESET function (see POWER chapter for details) |
| PSELRESET[1] | 0x204 | Mapping of the nRESET function (see POWER chapter for details) |
| APPROTECT | 0x208 | Access port protection |

Table 10: Register Overview

### 4.5.1.1 NRFFW[0]

## Address offset: 0x014

Reserved for Nordic firmware design

| Bit number |  | 3130292827 | 262524 | 23222120 | 19 | 181716 | 15 | 141312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A A | A A A | A A A A | A | A A A | A | A A A | A | A | A | A | A | A | A | A | A | A | A |
| Reset 0xFFFFFFFF |  | 11111 | 111 | 1111 | 1 | 111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFFW

### 4.5.1.2 NRFFW[1]

## Address offset: 0x018

## Reserved for Nordic firmware design



A RW NRFFW
Reserved for Nordic firmware design

### 4.5.1.3 NRFFW[2]

Address offset: 0x01C
Reserved for Nordic firmware design


### 4.5.1.4 NRFFW[3]

## Address offset: 0x020

Reserved for Nordic firmware design

| Bit number |  | 313 | 302928 | 27 | 262524 | 23 | 222120 | 19 | 181 | 1716 | 15 | 14 | 131 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  | A A A | A | A A A | A | A A A | A | A A | A A | A | A | A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 1 | 111 | 1 | 111 | 1 | 111 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  |  |  |  | escription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFFW
Reserved for Nordic firmware design

### 4.5.1.5 NRFFW[4]

## Address offset: 0x024

## Reserved for Nordic firmware design



### 4.5.1.6 NRFFW[5]

## Address offset: 0x028

## Reserved for Nordic firmware design



### 4.5.1.7 NRFFW[6]

Address offset: 0x02C
Reserved for Nordic firmware design


### 4.5.1.8 NRFFW[7]

Address offset: 0x030
Reserved for Nordic firmware design

| Bit number |  | 3130 | 30292 | 27 | 26 | 625 | 24 |  | 22 | 21 | 20 |  | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
| Reset 0xFFFFFFFF |  | 11 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Id RW Field | Value Id | Value |  |  |  |  |  |  | escri | riptio |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFFW Reserved for Nordic firmware design

### 4.5.1.9 NRFFW[8]

## Address offset: 0x034

Reserved for Nordic firmware design

| Bit number |  | 31302928272625242322212019 |  |  |  | 181716 | 15 | 14 | 1312 | 11 | 10 | 98 |  | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A A | A A A A | A A | A A A | A | A | A A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 1111 | 1111 | 1111 | 11 | 111 | 1 | 1 | 11 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW NRFFW |  |  |  | Reserved for | r Nor | rdic firm | wa | are | design |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.10 NRFFW[9]

Address offset: 0x038
Reserved for Nordic firmware design

| Bit number |  | 3130292827 | 262524 | 23222120 | 19 | 181716 | 15 | 141312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A A | A A A | A A A A | A | A A A | A | A A A | A | A | A | A | A | A | A | A | A | A | A |
| Reset 0xFFFFFFFF |  | 11111 | 111 | 1111 | 1 | 111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFFW

### 4.5.1.11 NRFFW[10]

Address offset: 0x03C

## Reserved for Nordic firmware design

$\left.\begin{array}{llllllllllllllllllllllllllllllll}\hline \text { Bit number } & & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2\end{array}\right)$

A RW NRFFW
Reserved for Nordic firmware design

### 4.5.1.12 NRFFW[11]

Address offset: 0x040
Reserved for Nordic firmware design


### 4.5.1.13 NRFFW[12]

## Address offset: 0x044

Reserved for Nordic firmware design

| Bit number |  | 3130 | 302928 | 27 | 26252 |  | 2322 | 22120 |  | 18 | 817 | 16 | 15 | 14 | 1312 | 11 | 110 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A A | A A | A A | A A A | A | A | A | A | A | A | A A | A | A | A | A | A | A | A | A | A | A | A | A |
| Reset 0xFFFFFFFF |  |  | 111 | 1 | 11 | 11 | 11 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| Id RW Field | Value Id | Value |  |  |  |  | Descri | cription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFFW
Reserved for Nordic firmware design

### 4.5.1.14 NRFFW[13]

## Address offset: 0x048

## Reserved for Nordic firmware design



### 4.5.1.15 NRFFW[14]

## Address offset: 0x04C

## Reserved for Nordic firmware design

| Bit number |  | 313 | 302928 | 27 | 262524 |  | 222120 |  | 181716 | 15 | 14 | 13 | 12 | 11 | 10 | 98 | 7 |  | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  | A A A | A | A A A | A | A A A | A | A A A | A | A | A | A | A | A | A A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  |  | 111 | 1 | 111 | 1 | 111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 11 | 1 | 1 | 1 | 1 |
| Id RW Field | Value Id | Valu |  |  |  |  | escription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW NRFFW |  |  |  |  |  |  | eserved fo | N | ordic firm | mwa | are | desi |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.16 NRFHW[0]

Address offset: 0x050
Reserved for Nordic hardware design

| Bit number |  |  |  |  | 302 | 2928 |  | 726 | 625 | 24 | 23 | 222120 | 19 | 918 | 81716 | 15 | 14 | 41312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 5 | 3 |  |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  | A |  | A A | A | A | A A | A | A | A A A | A | A A | A A A | A | A | A A A | A | A | A | A | A | A | A A | A | A |  |  | A |
| Reset 0xFFFFFFFF |  |  |  | 1 | 1 | 11 | 1 | 1 | 11 | 1 | 1 | 111 | 1 | 1 | 111 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 1 |
| Id | RW | Field | Value Id | Value |  |  |  |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | RW | NRFH |  |  |  |  |  |  |  |  |  | eserved for | N | Nord | dic hard | dwa | are | e design |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.17 NRFHW[1]

Address offset: 0x054
Reserved for Nordic hardware design

| Bit number |  | 313 | 302928 | 27 | 26 | 25 |  | 23 | 222 | 2120 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A | A | A | A | A | A A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  |  | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  |  |  |  |  |  | scrip | iption |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFHW Reserved for Nordic hardware design

### 4.5.1.18 NRFHW[2]

## Address offset: 0x058

Reserved for Nordic hardware design

| Bit number |  | 31302928 | 27262524 | 23222120 | 19181716 |  | 141312 | 111 | 109 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A A | A A A A | A A A A | A | A A A | A | A A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 1111 | 1111 | 1111 | 1111 | 1 | 111 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW NRFHW |  |  |  | Reserved for | Nordic hard | dwa | are design |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.19 NRFHW[3]

Address offset: 0x05C
Reserved for Nordic hardware design

| Bit number |  | 3130 | 302928 | 27 | 262524 |  | 22 | 2120 | 19 | 18 | 81716 | 15 | 14 | 1312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A A A | A | A | A A | A | A | A A | A | A | A A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 11 | 111 | 1 | 111 | 1 | 1 | 11 | 1 | 1 | 11 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Id RW Field | Value Id | Value |  |  |  |  | escr | iption |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFHW

### 4.5.1.20 NRFHW[4]

Address offset: 0x060

## Reserved for Nordic hardware design

| Bit number |  | 3130 | 302928 | 27 | 262524 | 23 | 322 | 21 | 201 | 19 | 181 | 1716 | 15 | 14 | 131 | 211 | 110 | 9 | 8 | 7 | 6 | 5 |  |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A A A | A | A | A | A | A | A A | A A | A | A | A | A A | A | A | A | A | A | A |  | A | A A |
| Reset OxFFFFFFFF |  | 11 | 111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 1 |
| Id RW Field | Value Id | Value |  |  |  |  | escri | criptio |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFHW
Reserved for Nordic hardware design

### 4.5.1.21 NRFHW[5]

Address offset: 0x064
Reserved for Nordic hardware design

| Bit number |  |  |  | 313029282726252423 |  |  |  |  |  |  |  | 23222120 |  |  |  | 191 | 181716 |  |  | 151 | 141312 |  |  | 11 | 109 |  | 8 | 7 | 6 | 54 |  | 310 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A |  | A | A | A | A |  | A | A A |
| Reset 0xFFFFFFFF |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 1 | 1 | 1 |  | 1 | 11 |
| Id | RW | Field | Value Id | Value |  |  |  |  |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | RW | NRFH |  |  |  |  |  |  |  |  |  |  | serv | rved | fo | N | ord | dic h | hard | dw | are | des | sign |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.22 NRFHW[6]

## Address offset: 0x068

Reserved for Nordic hardware design

| Bit number |  | 3130 | 302928 | 27 | 26252 |  | 2322 | 22120 |  | 18 | 817 | 16 | 15 | 14 | 1312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A A | A A | A A | A A A | A | A | A | A | A | A | A A | A | A | A | A | A | A | A | A | A | A | A | A |
| Reset 0xFFFFFFFF |  |  | 111 | 1 | 11 | 11 | 11 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Id RW Field | Value Id | Value |  |  |  |  | Descri | cription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFHW
Reserved for Nordic hardware design

### 4.5.1.23 NRFHW[7]

## Address offset: 0x06C

## Reserved for Nordic hardware design

| Bit number |  | 3130292827 | 262524 | 23222120 | 19181716 |  | 141312 | 111 | 109 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A A | A A A | A A A A | A A A A | A | A A A | A | A A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 11111 | 111 | 11111 | 1111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW NRFHW |  |  |  | Reserved for | Nordic hard | dwa | are design |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.24 NRFHW[8]

## Address offset: 0x070

## Reserved for Nordic hardware design

| Bit number |  | 3130 | 302928 | 27 | 262524 | 23222120 | 19 | 181716 | 15 | 141312 | 11 | 10 | 98 | 7 | 6 | 5 | 4 | 3 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  | A A A | A | A A A | A A A A | A | A A A | A | A A A | A | A | A A | A |  | A | A | A | A A A |
| Reset 0xFFFFFFFF |  |  | 111 | 1 | 111 | 111 | 1 | 111 | 1 | 11 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 |
| Id RW Field | Value Id | Value |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW NRFHW |  |  |  |  |  | Reserved for | No | Nordic hard | dwa | are desig |  |  |  |  |  |  |  |  |  |

### 4.5.1.25 NRFHW[9]

Address offset: 0x074
Reserved for Nordic hardware design

| Bit number |  |  |  |  | 302 | 2928 |  | 726 | 625 | 24 | 23 | 222120 | 19 | 918 | 81716 | 15 | 14 | 41312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 5 | 3 |  |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  | A |  | A A | A | A | A A | A | A | A A A | A | A A | A A A | A | A | A A A | A | A | A | A | A | A | A A | A | A |  |  | A |
| Reset 0xFFFFFFFF |  |  |  | 1 | 1 | 11 | 1 | 1 | 11 | 1 | 1 | 111 | 1 | 1 | 111 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 1 |
| Id | RW | Field | Value Id | Value |  |  |  |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | RW | NRFH |  |  |  |  |  |  |  |  |  | eserved for | N | Nord | dic hard | dwa | are | e design |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.26 NRFHW[10]

Address offset: $0 \times 078$
Reserved for Nordic hardware design

| Bit number |  | 313 | 302928 | 27 | 26 | 25 |  | 23 | 222 | 2120 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A | A | A | A | A | A A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  |  | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  |  |  |  |  |  | scrip | iption |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW NRFHW Reserved for Nordic hardware design

### 4.5.1.27 NRFHW[11]

## Address offset: 0x07C

Reserved for Nordic hardware design


### 4.5.1.28 CUSTOMER[0]

Address offset: 0x080
Reserved for customer

| Bit number |  | 3130 | 32928 | 27 | 262524 |  | 222120 |  | 181 | 1716 |  | 1413 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 |  |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A A A | A | A A A | A | A | A A | A | A A | A | A | A | A | A | A | A | A |  |  | A A |
| Reset 0xFFFFFFFF |  | 11 | 111 | 1 | 111 | 1 | 111 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 1 |
| Id RW Field | Value Id | Value |  |  |  |  | escription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW CUSTOMER

### 4.5.1.29 CUSTOMER[1]

Address offset: 0x084

## Reserved for customer

| Bit number |  | 3130 | 302928 | 27 | 26 | 25 |  |  | 22 | 21 |  |  | 18 | 17 | 16 | 15 | 14 | 131 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset OxFFFFFFFF |  | 11 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  |  |  |  |  |  | escr | criptio |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW CUSTOMER
Reserved for customer

### 4.5.1.30 CUSTOMER[2]

Address offset: 0x088

## Reserved for customer

| Bit number |  | 3130 | 302928 | 272 | 262524 |  | 222120 |  | 181716 |  | 14 | 1312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 |  |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A A A | A | A A A | A | A A A | A | A | A A | A | A | A | A | A | A | A |  |  | A A |
| Reset OxFFFFFFFF |  | 11 | 111 | 1 | 111 | 1 | 111 | 1 | 111 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 11 |
| Id RW Field | Value Id | Value |  |  |  |  | scription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW CUSTOMER |  |  |  |  |  |  | served fo | r | ustomer |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.31 CUSTOMER[3]

Address offset: 0x08C
Reserved for customer


A RW CUSTOMER

### 4.5.1.32 CUSTOMER[4]

## Address offset: 0x090

## Reserved for customer



### 4.5.1.33 CUSTOMER[5]

## Address offset: 0x094

Reserved for customer

| Bit number |  | 31302928 | 27262524 | 23222120 | 19 | 181716 | 15 | 141312 | 1110 | 10 | 98 | 87 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A A | A A A A | A | A A A | A | A A A | A | A | A | A | A | A | A | A | A | A A |
| Reset OxFFFFFFFF |  | 111 | 111 | 1111 | 1 | 111 | 1 | 111 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW CUSTOMER |  |  |  | Reserved for | r | ustomer |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.34 CUSTOMER[6]

Address offset: 0x098
Reserved for customer


### 4.5.1.35 CUSTOMER[7]

Address offset: 0x09C
Reserved for customer

| Bit number |  | 3130 | 3029 | 28 | 27 | 26 | 252 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 131 | 121 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  |  | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  |  |  |  |  |  |  | escri | ptio |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW CUSTOMER

### 4.5.1.36 CUSTOMER[8]

## Address offset: 0x0A0

Reserved for customer

| Bit number |  | 31302928 | 27262524 | 23222120 | 19 | 181716 | 15 | 1413 | 312 | 111 | 10 | 9 | 8 | 7 | 6 |  |  |  | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A A | A A A A | A | A A A | A | A A | A | A | A | A | A |  | A |  |  |  | A A |
| Reset OxFFFFFFFF |  | 11111 | 1111 | 1111 | 1 | 111 | 1 | 11 | 1 | 1 | 1 | 1 | 1 |  | 1 |  |  |  | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW CUSTOMER |  |  |  | Reserved for | cus | ustomer |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.37 CUSTOMER[9]

Address offset: 0x0A4
Reserved for customer


A RW CUSTOMER

### 4.5.1.38 CUSTOMER[10]

Address offset: 0x0A8

## Reserved for customer

$\left.\begin{array}{llllllllllllllllllllllllllllllll}\hline \text { Bit number } & & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2\end{array}\right)$

A RW CUSTOMER
Reserved for customer

### 4.5.1.39 CUSTOMER[11]

Address offset: 0x0AC

## Reserved for customer

| Bit number |  | 3130 | 302928 | 272 | 262524 |  | 222120 |  | 181716 |  | 14 | 1312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 |  |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A A A | A | A A A | A | A A A | A | A | A A | A | A | A | A | A | A | A |  |  | A A |
| Reset OxFFFFFFFF |  | 11 | 111 | 1 | 111 | 1 | 111 | 1 | 111 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 11 |
| Id RW Field | Value Id | Value |  |  |  |  | scription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW CUSTOMER |  |  |  |  |  |  | served fo | r | ustomer |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.40 CUSTOMER[12]

Address offset: 0x0B0
Reserved for customer

| Bit number |  | 313 | 302928 | 27 | 262524 | 23 | 222120 | 19 | 1817 | 716 | 15 | 1413 | 312 | 211 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  | A A A | A | A A A | A | A A A | A | A A | A | A | A A | A A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 1 | 111 | 1 | 111 | 1 | 111 | 1 | 11 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  |  |  |  | escription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW CUSTOMER

### 4.5.1.41 CUSTOMER[13]

## Address offset: 0x0B4

## Reserved for customer



### 4.5.1.42 CUSTOMER[14]

## Address offset: 0x0B8

Reserved for customer


### 4.5.1.43 CUSTOMER[15]

Address offset: 0x0BC
Reserved for customer


### 4.5.1.44 CUSTOMER[16]

Address offset: 0x0C0
Reserved for customer

| Bit number |  | 3130 | 3029 | 28 | 27 | 26 | 252 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 131 | 121 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  |  | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  |  |  |  |  |  |  | escri | ptio |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW CUSTOMER

### 4.5.1.45 CUSTOMER[17]

## Address offset: 0x0C4

Reserved for customer

| Bit number |  | 31302928 | 27262524 | 23222120 | 19 | 181716 | 15 | 1413 | 312 | 111 | 10 | 9 | 8 | 7 | 6 |  |  |  | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A A | A A A A | A | A A A | A | A A | A | A | A | A | A |  | A |  |  |  | A A |
| Reset OxFFFFFFFF |  | 11111 | 1111 | 1111 | 1 | 111 | 1 | 11 | 1 | 1 | 1 | 1 | 1 |  | 1 |  |  |  | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW CUSTOMER |  |  |  | Reserved for | cus | ustomer |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.46 CUSTOMER[18]

Address offset: 0x0C8
Reserved for customer


A RW CUSTOMER
Reserved for customer

### 4.5.1.47 CUSTOMER[19]

Address offset: 0x0CC

## Reserved for customer

$\left.\begin{array}{llllllllllllllllllllllllllllllll}\hline \text { Bit number } & & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2\end{array}\right)$

A RW CUSTOMER
Reserved for customer

### 4.5.1.48 CUSTOMER[20]

Address offset: 0x0DO
Reserved for customer

| BiId | umber |  |  | 30 | 29 | 28 |  | 26 | 25 | 24 | 23 | 22 | 2212 |  | 19 |  | 81716 | 615 | 51 |  | 13 |  | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | A | A | A | A | A | A | A | A | A | A | A A | A | A |  | A A | A A | A |  | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
| Reset 0xFFFFFFFF |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | 1 | 1 | 1 | 11 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Id | RW Field | Value Id | Value |  |  |  |  |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | RW CUST |  |  |  |  |  |  |  |  |  |  | ese | rved f | for | cu | usto | omer |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.49 CUSTOMER[21]

Address offset: 0x0D4
Reserved for customer

| Bit number |  | 31302928 | 27262524 | 23222120 |  | 181716 | 15 | 141312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A A | A A A A | A | A A A | A | A A A | A | A | A | A | A | A | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  | 11 1 1 | 1111 | 1111 | 1 | 111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

A RW CUSTOMER

### 4.5.1.50 CUSTOMER[22]

Address offset: 0x0D8

## Reserved for customer



### 4.5.1.51 CUSTOMER[23]

Address offset: 0x0DC
Reserved for customer

| Bit number <br> Id |  | 313029282 | 27262524 | 23222120 | 19 | 181716 | 15 | 141312 | 11 | 10 | 98 |  | 6 |  | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A A A A | A A A A | A A A A | A | A A A | A | A A A | A | A | A | A | A |  | A | A | A | A A |
| Reset OxFFFFFFFF |  | 1111 | 1111 | 1111 | 1 | 111 | 1 | 11 | 1 | 1 | 1 |  | 1 |  | 11 | 1 | 1 | 11 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW CUSTOMER |  |  |  | Reserved for | cu | ustomer |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.52 CUSTOMER[24]

Address offset: 0x0EO
Reserved for customer

| Bit number |  |  |  | 30 | 2928 | 27 | 26 | 625 | 524 | 23 | 322 | 222120 | 19 |  | 81716 | 15 |  | 413 | 12 | 11 | 10 | 9 | 8 | 7 | 6 |  | 5 | 4 | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  | A | A | A A | A | A | A A | A A | A | A | A A A | A |  | A A A | A |  | A | A | A | A | A | A | A | A |  | A | A | A | A | A A |
| Reset 0xFFFFFFFF |  |  | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 111 | 1 | 1 | 111 | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 11 |
| Id | RW Field | Value Id | Value |  |  |  |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A | RW CUST |  |  |  |  |  |  |  |  |  | ese | erved for | c Cl | ust | tomer |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.53 CUSTOMER[25]

Address offset: 0x0E4
Reserved for customer


A RW CUSTOMER Reserved for customer

### 4.5.1.54 CUSTOMER[26]

## Address offset: 0x0E8

## Reserved for customer



### 4.5.1.55 CUSTOMER[27]

Address offset: 0x0EC
Reserved for customer


A RW CUSTOMER
Reserved for customer

### 4.5.1.56 CUSTOMER[28]

Address offset: 0x0FO

## Reserved for customer

$\left.\begin{array}{llllllllllllllllllllllllllllllll}\hline \text { Bit number } & & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2\end{array}\right)$

A RW CUSTOMER
Reserved for customer

### 4.5.1.57 CUSTOMER[29]

Address offset: 0x0F4

## Reserved for customer

| Bit number |  | 3130 | 302928 | 272 | 262524 |  | 222120 |  | 181716 |  | 14 | 1312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 |  |  | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A | A A A | A | A A A | A | A A A | A | A A A | A | A | A A | A | A | A | A | A | A | A |  |  | A A |
| Reset OxFFFFFFFF |  | 11 | 111 | 1 | 111 | 1 | 111 | 1 | 111 | 1 | 1 | 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  | 11 |
| Id RW Field | Value Id | Value |  |  |  |  | scription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW CUSTOMER |  |  |  |  |  |  | served fo | r | ustomer |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.5.1.58 CUSTOMER[30]

## Address offset: 0x0F8

Reserved for customer
$\left.\begin{array}{l|l|l|lllllllllllllllllllllllllllll}\hline \text { Bit number } & 31 & 30 & 29 & 28 & 27 & 26 & 25 & 24 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right)$

A RW CUSTOMER

### 4.5.1.59 CUSTOMER[31]

## Address offset: 0x0FC

## Reserved for customer



### 4.5.1.60 PSELRESET[0]

## Address offset: 0x200

## Mapping of the nRESET function (see POWER chapter for details)

All PSELRESET registers have to contain the same value for a pin mapping to be valid. If values are not the same, there will be no nRESET function exposed on a GPIO. As a result, the device will always start independently of the levels present on any of the GPIOs.


### 4.5.1.61 PSELRESET[1]

Address offset: 0x204
Mapping of the nRESET function (see POWER chapter for details)
All PSELRESET registers have to contain the same value for a pin mapping to be valid. If values are not the same, there will be no nRESET function exposed on a GPIO. As a result, the device will always start independently of the levels present on any of the GPIOs.


### 4.5.1.62 APPROTECT

Address offset: 0x208
Access port protection

| Bit number |  |  | 3130292827262524 |  | 2322212019 |  | 181716 | 15 | 141312 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  |  | A | A | A |  | A | A | A |
|  | t 0xFFFFFFFF |  | 11 1 1 | 111 | 11111 | 1 | 111 | 1 | 111 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Id | RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A | RW PALL |  | Enable or disable access port protection. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | See Debug on page 50 for more information. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Disabled | 0xFF |  | Disable |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Enabled | $0 \times 00$ |  | Enable |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 4.6 EasyDMA

EasyDMA is a module implemented by some peripherals to gain direct access to Data RAM.
EasyDMA is an AHB bus master similar to CPU and is connected to the AHB multilayer interconnect for direct access to Data RAM. EasyDMA is not able to access flash.

A peripheral can implement multiple EasyDMA instances to provide dedicated channels. For example, for reading and writing of data between the peripheral and RAM. This concept is illustrated in EasyDMA example on page 48.


Figure 4: EasyDMA example
An EasyDMA channel is usually implemented like illustrated by the code below, but some variations may occur:

```
READERBUFFER_SIZE 5
WRITERBUFFER_SIZE 6
uint8_t readerBuffer[READERBUFFER_SIZE] __at__ 0x20000000;
uint8_t writerBuffer[WRITERBUFFER_SIZE] __at__ 0x20000005;
// Configuring the READER channel
MYPERIPHERAL->READER.MAXCNT = READERBUFFER_SIZE;
MYPERIPHERAL->READER.PTR = &readerBuffer;
// Configure the WRITER channel
MYPERIPHERAL->WRITER.MAXCNT = WRITEERBUFFER SIZE;
MYPERIPHERAL->WRITER.PTR = &writerBuffer;
```

This example shows a peripheral called MYPERIPHERAL that implements two EasyDMA channels - one for reading called READER, and one for writing called WRITER. When the peripheral is started, it is assumed that the peripheral will:

- Read 5 bytes from the readerBuffer located in RAM at address $0 \times 20000000$.
- Process the data.
- Write no more than 6 bytes back to the writerBuffer located in RAM at address 0x20000005.

The memory layout of these buffers is illustrated in EasyDMA memory layout on page 49.

| $0 \times 20000000$ | readerBuffer[0] | readerBuffer[1] | readerBuffer[2] | readerBuffer[3] |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $0 \times 20000004$ | readerBuffer[4] | writerBuffer[0] | writerBuffer[1] | writerBuffer[2] |  |
| 0 | writerBuffer[3] | writerBuffer[4] | writerBuffer[5] |  |  |

Figure 5: EasyDMA memory layout
The WRITER.MAXCNT register should not be specified larger than the actual size of the buffer (writerBuffer). Otherwise, the channel would overflow the writerBuffer.

Once an EasyDMA transfer is completed, the AMOUNT register can be read by the CPU to see how many bytes were transferred. For example, CPU can read MYPERIPHERAL->WRITER.AMOUNT register to see how many bytes WRITER wrote to RAM.

### 4.6.1 EasyDMA array list

EasyDMA is able to operate in a mode called array list.
The array list does not provide a mechanism to explicitly specify where the next item in the list is located. Instead, it assumes that the list is organized as a linear array where items are located one after the other in RAM.

The EasyDMA array list can be implemented by using the data structure ArrayList_type as illustrated in the code example below:

```
#define BUFFER_SIZE 4
typedef struct ArrayList
{
    uint8_t buffer[BUFFER_SIZE];
} ArrayList_type;
ArrayList_type ReaderList[3];
READER.MAXCNT = BUFFER_SIZE;
READER.PTR = &ReaderList;
```

The data structure only includes a buffer with size equal to the size of READER.MAXCNT register. EasyDMA uses the READER.MAXCNT register to determine when the buffer is full.

| READER.PTR $=$ \& ReaderList |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0x20000000 : ReaderList[0] | buffer[0] | buffer[1] | buffer[2] | buffer[3] |
| 0x20000004 : ReaderList[1] | buffer[0] | buffer[1] | buffer[2] | buffer[3] |
| 0x20000008: ReaderList[2] | buffer[0] | buffer[1] | buffer[2] | buffer[3] |

Figure 6: EasyDMA array list

### 4.7 AHB multilayer

AHB multilayer enables parallel access paths between multiple masters and slaves in a system. Access is resolved using priorities.

Each bus master is connected to the slave devices using an interconnection matrix. The bus masters are assigned priorities. Priorities are used to resolve access when two (or more) bus masters request access to the same slave device. The following applies:

- If two (or more) bus masters request access to the same slave device, the master with the highest priority is granted the access first.
- Bus masters with lower priority are stalled until the higher priority master has completed its transaction.
- If the higher priority master pauses at any point during its transaction, the lower priority master in queue is temporarily granted access to the slave device until the higher priority master resumes its activity.
- Bus masters that have the same priority are mutually exclusive, thus cannot be used concurrently.

Below is a list of bus masters in the system and their priorities.

| Bus master name | Description |
| :--- | :--- |
| CPU |  |
| SPIMO/SPISO | Same priority and mutually exclusive |
| RADIO |  |
| CCM/ECB/AAR | Same priority and mutually exclusive |
| SAADC |  |
| UARTEO |  |
| TWIMO/TWISO |  |
| PDM |  |
| PWM |  |

Table 11: AHB bus masters (listed in priority order, highest to lowest)
Defined bus masters are the CPU and the peripherals with implemented EasyDMA, and the available slaves are RAM AHB slaves. How the bus masters and slaves are connected using the interconnection matrix is illustrated in Memory on page 15.

### 4.8 Debug

The debug system offers a flexible and powerful mechanism for non-intrusive debugging.


Figure 7: Overview
The main features of the debug system are:

- Two-pin Serial Wire Debug (SWD) interface
- Flash Patch and Breakpoint Unit (FPB) supports:
- Two literal comparators
- Six instruction comparators


### 4.8.1 DAP - Debug Access Port

An external debugger can access the device via the DAP.
The DAP implements a standard ARM ${ }^{\circledR}$ CoreSight $^{\text {TM }}$ Serial Wire Debug Port (SW-DP).
The SW-DP implements the Serial Wire Debug protocol (SWD) that is a two-pin serial interface, see SWDCLK and SWDIO in Overview on page 51.

In addition to the default access port in the CPU (AHB-AP), the DAP includes a custom Control Access Port (CTRL-AP). The CTRL-AP is described in more detail in CTRL-AP - Control Access Port on page 51.

## Important:

- The SWDIO line has an internal pull-up resistor.
- The SWDCLK line has an internal pull-down resistor.


### 4.8.2 CTRL-AP - Control Access Port

The Control Access Port (CTRL-AP) is a custom access port that enables control of the device even if the other access ports in the DAP are being disabled by the access port protection.

Access port protection blocks the debugger from read and write access to all CPU registers and memorymapped addresses. See the UICR register APPROTECT on page 47 for more information about enabling access port protection.

This access port enables the following features:

- Soft reset, see Reset on page 65 for more information
- Disable access port protection

Access port protection can only be disabled by issuing an ERASEALL command via CTRL-AP. This command will erase the Flash, UICR, and RAM.

### 4.8.2.1 Registers

| Register | Offset | Description |
| :--- | :--- | :--- |
| RESET | $0 \times 000$ | Soft reset triggered through CTRL-AP |
| ERASEALL | $0 \times 004$ | Erase all |
| ERASEALLSTATUS | $0 \times 008$ | Status register for the ERASEALL operation |
| APPROTECTSTATUS | $0 \times 00 C$ | Status register for access port protection |
| IDR | $0 \times 0 F C$ | CTRL-AP Identification Register, IDR |

Table 12: Register Overview

### 4.8.2.1.1 RESET

Address offset: 0x000
Soft reset triggered through CTRL-AP


### 4.8.2.1.2 ERASEALL

Address offset: 0x004
Erase all


### 4.8.2.1.3 ERASEALLSTATUS

Address offset: 0x008
Status register for the ERASEALL operation


### 4.8.2.1.4 APPROTECTSTATUS

Address offset: 0x00C
Status register for access port protection

| Bit number |  | 3130292827262524 |  | $+2322212019$ | 19181716151413121 |  |  | $11098$ |  | 7 | $654$ |  | $3$ |  | $\begin{array}{rrr} 210 \\ & 1 & A \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Reset 0x00000000 |  | 00000 | 000 | 0000 | 0000 | 0000 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 00 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |
| R APPROTECTSTATUS |  |  |  | Status register for access port protection |  |  |  |  |  |  |  |  |  |  |  |
|  | Enabled | 0 |  | Access port p | protection en | nabled |  |  |  |  |  |  |  |  |  |
|  | Disabled | 1 |  | Access port p | protection no | ot enabled |  |  |  |  |  |  |  |  |  |

### 4.8.2.1.5 IDR

Address offset: 0x0FC
CTRL-AP Identification Register, IDR


### 4.8.2.2 Electrical specification

### 4.8.2.2.1 Control access port

| Symbol | Description | Min. | Typ. | Max. | Units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $R_{\text {pull }}$ | Internal SWDIO and SWDCLK pull up/down resistance | 13 | $k \Omega$ |  |  |

### 4.8.3 Debug interface mode

Before the external debugger can access the CPU's access port (AHB-AP) or the Control Access Port (CTRLAP), the debugger must first request the device to power up via CxxxPWRUPREQ in the SWJ-DP.

As long as the debugger is requesting power via CxxxPWRUPREQ, the device will be in debug interface mode. If the debugger is not requesting power via CxxxPWRUPREQ, the device will be in normal mode.

Some peripherals will behave differently in debug interface mode compared to normal mode. These differences are described in more detail in the chapters of the peripherals that are affected.

When a debug session is over, the external debugger must make sure to put the device back into normal mode since the overall power consumption will be higher in debug interface mode compared to normal mode.

For details on how to use the debug capabilities please read the debug documentation of your IDE.
If the device is in System OFF when power is requested via CxxxPWRUPREQ, the system will wake up and the DIF flag in RESETREAS on page 68 will be set.

### 4.8.4 Real-time debug

The nRF52810 supports real-time debugging.
Real-time debugging will allow interrupts to execute to completion in real time when breakpoints are set in Thread mode or lower priority interrupts. This enables the developer to set a breakpoint and singlestep through their code without a failure of the real-time event-driven threads running at higher priority. For example, this enables the device to continue to service the high-priority interrupts of an external controller or sensor without failure or loss of state synchronization while the developer steps through code in a low-priority thread.

## 5

## Power and clock management

### 5.1 Power management unit (PMU)

Power and clock management in nRF52810 is designed to automatically ensure maximum power efficiency.

The core of the power and clock management system is the power management unit (PMU) illustrated in Power management unit on page 55.


Figure 8: Power management unit
The PMU automatically detects which power and clock resources are required by the different components in the system at any given time. It will then start/stop and choose operation modes in supply regulators and clock sources, without user interaction, to achieve the lowest power consumption possible.

### 5.2 Current consumption

As the system is being constantly tuned by the Power management unit (PMU) on page 55, estimating the current consumption of an application can be challenging if the designer is not able to perform measurements directly on the hardware. To fascilitate the estimation process, a set of current consumption scenarios are provided to show the typical current drawn from the VDD supply.

Each scenario specifies a set of operations and conditions applying to the given scenario. Current consumption scenarios, common conditions on page 56 shows a set of common conditions used in all scenarios, unless otherwise is stated in the description of a given scenario. All scenarios are listed in Electrical specification on page 56

| Condition | Value |
| :--- | :--- |
| VDD | 3 V |
| Temperature | $25^{\circ} \mathrm{C}$ |
| CPU | WFI (wait for interrupt)/WFE (wait for event) sleep |
| Peripherals | All idle |
| Clock | Not running |
| Regulator | LDO |
| RAM | Full 24 kB retention |
| Compiler ${ }^{3}$ | GCC v4.9.3 20150529 (arm-none-eabi-gcc). <br> Compiler flags: -O0 -falign-functions=16 -fno-strict- <br> aliasing -mcpu=cortex-m4 -mfloat-abi=soft -msoft- <br> float -mthumb. |
| 32 MHz crystal ${ }^{4}$ | SMD 2520, $32 \mathrm{MHz}, 10 \mathrm{pF}+/-10$ ppm |

Table 13: Current consumption scenarios, common conditions

### 5.2.1 Electrical specification

### 5.2.1.1 CPU running

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I CPUo | CPU running CoreMark @ 64 MHz from flash, Clock = HFXO, Regulator $=$ DCDC |  | 2.2 |  | mA |
| $\mathrm{I}_{\text {CPU1 }}$ | CPU running CoreMark @64 MHz from flash, Clock = HFXO |  | 4.2 |  | mA |
| $I_{\text {CPU2 }}$ | CPU running CoreMark @64 MHz from RAM, Clock = HFXO, Regulator $=$ DCDC |  | 2.1 |  | mA |
| $I_{\text {CPU3 }}$ | CPU running CoreMark @ 64 MHz from RAM, Clock $=$ HFXO |  | 4 |  | mA |
| $I_{\text {CPU4 }}$ | CPU running CoreMark @64 MHz from flash, Clock = HFINT, Regulator $=$ DCDC |  | 2 |  | mA |

[^2]
### 5.2.1.2 Radio transmitting/receiving

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {RADIO_TXO }}$ | Radio transmitting @ 4 dBm output power, 1 Mbps <br> Bluetooth low energy mode, Clock $=$ HFXO, Regulator $=$ DCDC |  | 8 |  | mA |
| $\mathrm{I}_{\text {RADIO_TX1 }}$ | Radio transmitting @ 0 dBm output power, 1 Mbps Bluetooth low energy mode, Clock $=$ HFXO, Regulator $=$ DCDC |  | 5.8 |  | mA |
| $\mathrm{I}_{\text {RADIO_TX2 }}$ | Radio transmitting @ -40 dBm output power, 1 Mbps <br> Bluetooth low energy mode, Clock $=$ HFXO, Regulator $=$ DCDC |  | 3.4 |  | mA |
| $\mathrm{I}_{\text {RADIO_RXO }}$ | Radio receiving @ 1 Mbps Bluetooth low energy mode, Clock $=$ HFXO, Regulator $=$ DCDC |  | 6.1 |  | mA |
| $I_{\text {RADIO_TX3 }}$ | Radio transmitting @ 0 dBm output power, 1 Mbps <br> Bluetooth low energy mode, Clock $=$ HFXO |  | 10.5 |  | mA |
| $\mathrm{I}_{\text {RADIO_TX4 }}$ | Radio transmitting @-40 dBm output power, 1 Mbps <br> Bluetooth low energy mode, Clock $=$ HFXO |  | 5.1 |  | mA |
| $\mathrm{I}_{\text {RADIO_RX1 }}$ | Radio receiving @ 1 Mbps Bluetooth low energy mode, Clock = HFXO |  | 10.8 |  | mA |



Figure 9: Radio transmitting @ 4 dBm output power, 1 Mbps Bluetooth low energy mode, Clock = HFXO, Regulator = DCDC (typical values)


Figure 10: Radio transmitting @ 0 dBm output power, 1 Mbps Bluetooth low energy mode, Clock = HFXO, Regulator = DCDC (typical values)

### 5.2.1.3 Sleep

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ion_ramoff_event | System ON, No RAM retention, Wake on any event |  | 0.6 |  | $\mu \mathrm{A}$ |
| lon_ramon_event | System ON, Full 24 kB RAM retention, Wake on any event |  | 0.8 |  | $\mu \mathrm{A}$ |
| lon_ramon_pof | System ON, Full 24 kB RAM retention, Wake on any event, Power fail comparator enabled |  | 0.8 |  | $\mu \mathrm{A}$ |
| Ion_ramon_griote | System ON, Full 24 kB RAM retention, Wake on GPIOTE input (Event mode) |  | 3.3 |  | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {On_RAMOn_GPIotepor }}$ | sTYstem ON, Full 24 kB RAM retention, Wake on GPIOTE PORT event |  | 0.8 |  | $\mu \mathrm{A}$ |
| Ion_ramon_rtc | System ON, Full 24 kB RAM retention, Wake on RTC (running from LFRC clock) |  | 1.5 |  | $\mu \mathrm{A}$ |
| Ioff_ramoff_reset | System OFF, No RAM retention, Wake on reset |  | 0.3 |  | $\mu \mathrm{A}$ |
| loff_RAmon_reset | System OFF, Full 24 kB RAM retention, Wake on reset |  | 0.5 |  | $\mu \mathrm{A}$ |



Figure 11: System OFF, No RAM retention, Wake on reset (typical values)


Figure 12: System ON, Full 24 kB RAM retention, Wake on any event (typical values)

### 5.2.1.4 Compounded

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{50}$ | CPU running CoreMark from flash, Radio transmitting @ 0 dBm output power, 1 Mbps Bluetooth low energy mode, Clock $=$ HFXO, Regulator $=$ DCDC |  | 7.4 |  | mA |
| $l_{\text {s } 1}$ | CPU running CoreMark from flash, Radio receiving @ 1 <br> Mbps Bluetooth low energy mode, Clock = HFXO, Regulator = DCDC |  | 7.6 |  | mA |
| $\mathrm{l}_{\mathrm{s} 2}$ | CPU running CoreMark from flash, Radio transmitting @ 0 dBm output power, 1 Mbps Bluetooth low energy mode, Clock $=$ HFXO |  | 13.8 |  | mA |
| $\mathrm{I}_{53}$ | CPU running CoreMark from flash, Radio receiving @ 1 <br> Mbps Bluetooth low energy mode, Clock $=$ HFXO |  | 14.2 |  | mA |

### 5.2.1.5 TIMER running

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{\text {timero }}$ | One TIMER instance running @ 1 MHz, Clock = HFINT |  | 432 |  | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {timer1 }}$ | Two TIMER instances running @ 1 MHz , Clock = HFINT |  | 432 |  | $\mu \mathrm{A}$ |
| $1_{\text {timerz }}$ | One TIMER instance running @ 1 MHz , Clock = HFXO |  | 730 |  | $\mu \mathrm{A}$ |
| $1_{\text {timer }}$ | One TIMER instance running @ 16 MHz , Clock = HFINT |  | 495 |  | $\mu \mathrm{A}$ |
| $1_{\text {timer }}$ | One TIMER instance running @ 16 MHz , Clock = HFXO |  | 792 |  | $\mu \mathrm{A}$ |

### 5.2.1.6 RNG active

| Symbol | Description | Min. | Typ. | Max. | Units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| IRNGO | RNG running | 539 | $\mu \mathrm{~A}$ |  |  |

### 5.2.1.7 TEMP active

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {TEMPO }}$ | TEMP started |  | 998 |  | $\mu \mathrm{A}$ |

### 5.2.1.8 SAADC active

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {SAADC,RUN }}$ | SAADC sampling @ 16 ksps , Acquisition time $=20 \mu \mathrm{~s}$, Clock $=$ |  | 1.1 |  | mA |
|  | HFXO, Regulator = DCDC |  |  |  |  |

### 5.2.1.9 COMP active

| Symbol | Description | Min. | Typ. | Max. |
| :--- | :--- | :--- | :--- | :--- |
| ICOMP,LP | COMP enabled, low power mode | 17.2 | $\mu \mathrm{~A}$ |  |
| ICOMP,NORM | COMP enabled, normal mode | 21 | $\mu \mathrm{~A}$ |  |
| ICOMP,HS | COMP enabled, high-speed mode | 28.7 | $\mu \mathrm{~A}$ |  |

### 5.2.1.10 WDT active

| Symbol | Description | Min. | Typ. | Max. |
| :--- | :--- | :--- | :--- | :--- |
| Units |  |  |  |  |
| IWdT,STARTED | WDT started | 1.3 | $\mu \mathrm{~A}$ |  |

### 5.3 POWER - Power supply

This device has the following power supply features:

- On-chip LDO and DC/DC regulators
- Global System ON/OFF modes with individual RAM section power control
- Analog or digital pin wakeup from System OFF
- Supervisor HW to manage power on reset, brownout, and power fail
- Auto-controlled refresh modes for LDO and DC/DC regulators to maximize efficiency
- Automatic switching between LDO and DC/DC regulator based on load to maximize efficiency

Note: Two additional external passive components are required to use the DC/DC regulator.

### 5.3.1 Regulators

The following internal power regulator alternatives are supported:

- Internal LDO regulator
- Internal DC/DC regulator

The LDO is the default regulator.
The DC/DC regulator can be used as an alternative to the LDO regulator and is enabled through the DCDCEN on page 70 register. Using the DC/DC regulator will reduce current consumption compared to when using the LDO regulator, but the DC/DC regulator requires an external LC filter to be connected, as shown in DC/DC regulator setup on page 62.


Figure 13: LDO regulator setup


Figure 14: DC/DC regulator setup

### 5.3.2 System OFF mode

System OFF is the deepest power saving mode the system can enter. In this mode, the system's core functionality is powered down and all ongoing tasks are terminated.

The device can be put into System OFF mode using the POWER register interface. When in System OFF mode, the device can be woken up through one of the following:

1. The DETECT signal, optionally generated by the GPIO peripheral
2. A reset

When the system wakes up from System OFF mode, it gets reset. For more details, see Reset behavior on page 66.

One or more RAM sections can be retained in System OFF mode depending on the settings in the RAM[n].POWER registers.

RAM[n].POWER are retained registers, see Reset behavior. Note that these registers are usually overwritten by the startup code provided with the nRF application examples.

Before entering System OFF mode, the user must make sure that all on-going EasyDMA transactions have been completed. This is usually accomplished by making sure that the EasyDMA enabled peripheral is not active when entering System OFF.

### 5.3.2.1 Emulated System OFF mode

If the device is in debug interface mode, System OFF will be emulated to secure that all required resources needed for debugging are available during System OFF.

See Debug on page 50 for more information. Required resources needed for debugging include the following key components: Debug on page 50, CLOCK - Clock control on page 83, POWER - Power supply on page 61, NVMC - Non-volatile memory controller on page 18, CPU, Flash, and RAM. Since the CPU is kept on in an emulated System OFF mode, it is recommended to add an infinite loop directly after entering System OFF, to prevent the CPU from executing code that normally should not be executed.

### 5.3.3 System ON mode

System ON is the default state after power-on reset. In System ON, all functional blocks such as the CPU or peripherals, can be in IDLE or RUN mode, depending on the configuration set by the software and the state of the application executing.

Register RESETREAS on page 68 provides information about the source that caused the wakeup or reset.

The system can switch on and off the appropriate internal power sources, depending on how much power is needed at any given time. The power requirement of a peripheral is directly related to its activity level, and the activity level of a peripheral is usually raised and lowered when specific tasks are triggered or events are generated.

### 5.3.3.1 Sub power modes

In System ON mode, when both the CPU and all the peripherals are in IDLE mode, the system can reside in one of the two sub power modes.

The sub power modes are:

- Constant latency
- Low power

In constant latency mode the CPU wakeup latency and the PPI task response will be constant and kept at a minimum. This is secured by forcing a set of base resources on while in sleep. The advantage of having a constant and predictable latency will be at the cost of having increased power consumption. The constant latency mode is selected by triggering the CONSTLAT task.

In low power mode the automatic power management system, described in System ON mode on page 63 , ensures the most efficient supply option is chosen to save the most power. The advantage of having the lowest power possible will be at the cost of having varying CPU wakeup latency and PPI task response. The low power mode is selected by triggering the LOWPWR task.

When the system enters System ON mode, it will, by default, reside in the low power sub-power mode.

### 5.3.4 Power supply supervisor

The power supply supervisor initializes the system at power-on and provides an early warning of impending power failure.

In addition, the power supply supervisor puts the system in a reset state if the supply voltage is too low for safe operation (brownout). The power supply supervisor is illustrated in Power supply supervisor on page 64.


Figure 15: Power supply supervisor

### 5.3.4.1 Power-fail comparator

The power-fail comparator (POF) can provide the CPU with an early warning of impending power failure. It will not reset the system, but give the CPU time to prepare for an orderly power-down.

The comparator features a hysteresis of $\mathrm{V}_{\mathrm{HYST}}$, as illustrated in Power-fail comparator ( $\mathrm{BOR}=$ Brownout reset) on page 64. The threshold $\mathrm{V}_{\text {POF }}$ is set in register POFCON on page 69 . If the POF is enabled and the supply voltage falls below $\mathrm{V}_{\text {POF, }}$, the POFWARN event will be generated. This event will also be generated if the supply voltage is already below $\mathrm{V}_{\text {POF }}$ at the time the POF is enabled, or if $\mathrm{V}_{\text {POF }}$ is reconfigured to a level above the supply voltage.

If power-fail warning is enabled and the supply voltage is below $\mathrm{V}_{\text {POF }}$ the power-fail comparator will prevent the NVMC from performing write operations to the NVM. See NVMC - Non-volatile memory controller on page 18 for more information about the NVMC.


Figure 16: Power-fail comparator ( $B O R=$ Brownout reset $)$
To save power, the power-fail comparator is not active in System OFF or in System ON when HFCLK is not running.

### 5.3.7 Retained registers

A retained register is a register that will retain its value in System OFF mode and through a reset, depending on reset source. See individual peripheral chapters for information of which registers are retained for the various peripherals.

### 5.3.8 Reset behavior

| Reset source | Reset target |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPU | Peripherals | GPIO | Debug ${ }^{\text {a }}$ | SWJ-DP | RAM | WDT | Retained registers | RESETREAS |
| CPU lockup ${ }^{5}$ | x | x | x |  |  |  |  |  |  |
| Soft reset | x | x | x |  |  |  |  |  |  |
| Wakeup from System OFF mode reset | x | x |  | $x^{6}$ |  | $x^{7}$ |  |  |  |
| Watchdog reset ${ }^{8}$ | x | x | x | x |  | x | x | x |  |
| Pin reset | x | x | x | x |  | x | x | x |  |
| Brownout reset | x | x | x | x | x | x | x | X | x |
| Power on reset | x | x | x | x | x | x | x | x | x |

Note: The RAM is never reset, but depending on reset source, RAM content may be corrupted.

### 5.3.9 Registers

| Base address | Peripheral | Instance | Description |
| :--- | :--- | :--- | :--- |
| $0 \times 40000000$ | POWER | POWER | Power control |

Table 14: Instances

| Register | Offset | Description |
| :--- | :--- | :--- |
| TASKS_CONSTLAT | $0 \times 078$ | Enable constant latency mode |
| TASKS_LOWPWR | $0 \times 07 C$ | Enable low power mode (variable latency) |
| EVENTS_POFWARN | $0 \times 108$ | Power failure warning |
| EVENTS_SLEEPENTER | $0 \times 114$ | CPU entered WFI/WFE sleep |
| EVENTS_SLEEPEXIT | $0 \times 118$ | CPU exited WFI/WFE sleep |
| INTENSET | $0 \times 304$ | Enable interrupt |
| INTENCLR | $0 \times 308$ | Disable interrupt |
| RESETREAS | $0 \times 400$ | Reset reason |
| SYSTEMOFF | $0 \times 500$ | System OFF register |
| POFCON | $0 \times 510$ | Power failure comparator configuration |
| GPREGRET | $0 \times 51 C$ | General purpose retention register |

[^3]| Register | Offset | Description |
| :--- | :--- | :--- | :--- |
| GPREGRET2 | $0 \times 520$ | General purpose retention register |
| DCDCEN | $0 \times 578$ | DC/DC enable register |
| RAM[0].POWER | $0 \times 900$ | RAM0 power control register |
| RAM[0].POWERSET | $0 \times 904$ | RAM0 power control set register |
| RAM[0].POWERCLR | $0 \times 908$ | RAM0 power control clear register |
| RAM[1].POWER | $0 \times 910$ | RAM1 power control register |
| RAM[1].POWERSET | $0 \times 914$ | RAM1 power control set register |
| RAM[1].POWERCLR | $0 \times 918$ | RAM1 power control clear register |
| RAM[2].POWER | $0 \times 920$ | RAM2 power control register |
| RAM[2].POWERSET | $0 \times 924$ | RAM2 power control set register |
| RAM[2].POWERCLR | $0 \times 928$ | RAM2 power control clear register |
| RAM[3].POWER | $0 \times 930$ | RAM3 power control register |
| RAM[3].POWERSET | $0 \times 934$ | RAM3 power control set register |
| RAM[3].POWERCLR | $0 \times 938$ | RAM3 power control clear register |
| RAM[4].POWER | $0 \times 940$ | RAM4 power control register |
| RAM[4].POWERSET | $0 \times 944$ | RAM4 power control set register |
| RAM[4].POWERCLR | $0 \times 948$ | RAM4 power control clear register |
| RAM[5].POWER | $0 \times 950$ | RAM5 power control register |
| RAM[5].POWERSET | $0 \times 954$ | RAM5 power control set register |
| RAM[5].POWERCLR | $0 \times 958$ | RAM5 power control clear register |
| RAM[6].POWER | $0 \times 960$ | RAM6 power control register |
| RAM[6].POWERSET | $0 \times 964$ | RAM6 power control set register |
| RAM[6].POWERCLR | $0 \times 968$ | RAM6 power control clear register |
| RAM[7].POWER | $0 \times 970$ | RAM7 power control register |
| RAM[7].POWERSET | $0 \times 974$ | RAM7 power control set register |
| RAM[7].POWERCLR | $0 \times 978$ | RAM7 power control clear register |

Table 15: Register Overview

### 5.3.9.1 INTENSET

## Address offset: 0x304

Enable interrupt



### 5.3.9.2 INTENCLR

## Address offset: 0x308

Disable interrupt


### 5.3.9.3 RESETREAS

## Address offset: 0x400

## Reset reason

Unless cleared, the RESETREAS register will be cumulative. A field is cleared by writing ' 1 ' to it. If none of the reset sources are flagged, this indicates that the chip was reset from the on-chip reset generator, which will indicate a power-on-reset or a brownout reset.



### 5.3.9.4 SYSTEMOFF

Address offset: 0x500
System OFF register

| Bit number |  | 3130292827262524 |  | 2322212019 |  | 18171615 | 141312 | 11 | 10 | 98 | 7 | 6 | 5 | 4 | 3 | 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | A |
| Reset 0x00000000 |  | 0000 | 0000 | 0000 | 0 | 0000 | 000 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A W SYSTEMOFF |  |  |  | Enable Syste | m | OFF mode |  |  |  |  |  |  |  |  |  |  |  |
|  | Enter | 1 |  | Enable Syste | m | OFF mode |  |  |  |  |  |  |  |  |  |  |  |

### 5.3.9.5 POFCON

## Address offset: 0x510

## Power failure comparator configuration



| Bit number |  | 3130292827 | 27262524 | 23222120 | 19181716 | 15 | 141312 | 1 | 10 | 9 | 8 | 7 | 6 |  |  |  | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | B |  |
| Reset 0x00000000 |  | 0000 | 0000 | 0000 | 0000 | 0 | 000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  | 0 | 0 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | V28 | 15 |  | Set threshold | d to 2.8 V |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 5.3.9.6 GPREGRET

Address offset: 0x51C
General purpose retention register


### 5.3.9.7 GPREGRET2

Address offset: 0x520
General purpose retention register


### 5.3.9.8 DCDCEN

Address offset: 0x578
DC/DC enable register


### 5.3.9.9 RAM[0].POWER

Address offset: 0x900
RAMO power control register


### 5.3.9.10 RAM[0].POWERSET

Address offset: 0x904
RAMO power control set register
When read, this register will return the value of the POWER register.


### 5.3.9.11 RAM[0].POWERCLR

Address offset: 0x908
RAM0 power control clear register

When read, this register will return the value of the POWER register.


### 5.3.9.12 RAM[1].POWER

Address offset: 0x910
RAM1 power control register


### 5.3.9.13 RAM[1].POWERSET

## Address offset: 0x914

RAM1 power control set register
When read, this register will return the value of the POWER register.


### 5.3.9.14 RAM[1].POWERCLR

Address offset: 0x918
RAM1 power control clear register
When read, this register will return the value of the POWER register.


### 5.3.9.15 RAM[2].POWER

Address offset: 0x920
RAM2 power control register


### 5.3.9.16 RAM[2].POWERSET

Address offset: 0x924
RAM2 power control set register
When read, this register will return the value of the POWER register.


### 5.3.9.17 RAM[2].POWERCLR

Address offset: 0x928
RAM2 power control clear register

When read, this register will return the value of the POWER register.


### 5.3.9.18 RAM[3].POWER

Address offset: 0x930
RAM3 power control register


### 5.3.9.19 RAM[3].POWERSET

## Address offset: 0x934

RAM3 power control set register
When read, this register will return the value of the POWER register.


### 5.3.9.20 RAM[3].POWERCLR

Address offset: 0x938
RAM3 power control clear register
When read, this register will return the value of the POWER register.


### 5.3.9.21 RAM[4].POWER

Address offset: 0x940
RAM4 power control register


### 5.3.9.22 RAM[4].POWERSET

Address offset: 0x944
RAM4 power control set register
When read, this register will return the value of the POWER register.


### 5.3.9.23 RAM[4].POWERCLR

## Address offset: 0x948

## RAM4 power control clear register

When read, this register will return the value of the POWER register.


### 5.3.9.24 RAM[5].POWER

Address offset: 0x950
RAM5 power control register


### 5.3.9.25 RAM[5].POWERSET

## Address offset: 0x954

RAM5 power control set register
When read, this register will return the value of the POWER register.


### 5.3.9.26 RAM[5].POWERCLR

Address offset: 0x958
RAM5 power control clear register
When read, this register will return the value of the POWER register.


### 5.3.9.27 RAM[6].POWER

Address offset: 0x960
RAM6 power control register


### 5.3.9.28 RAM[6].POWERSET

Address offset: 0x964
RAM6 power control set register
When read, this register will return the value of the POWER register.


### 5.3.9.29 RAM[6].POWERCLR

## Address offset: 0x968

## RAM6 power control clear register

When read, this register will return the value of the POWER register.


### 5.3.9.30 RAM[7].POWER

Address offset: 0x970
RAM7 power control register


### 5.3.9.31 RAM[7].POWERSET

## Address offset: 0x974

RAM7 power control set register
When read, this register will return the value of the POWER register.


### 5.3.9.32 RAM[7].POWERCLR

Address offset: 0x978
RAM7 power control clear register
When read, this register will return the value of the POWER register.


### 5.3.10 Electrical specification

### 5.3.10.1 Device startup times

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {POR }}$ | Time in Power on Reset after VDD reaches 1.7 V for all supply voltages and temperatures. Dependent on supply rise time. ${ }^{9}$ |  |  |  |  |
| $\mathrm{t}_{\text {PoR,10us }}$ | VDD rise time 10us |  | 1 |  | ms |

[^4]| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {POR,10ms }}$ | VDD rise time 10 ms |  | 9 |  | ms |
| $\mathrm{t}_{\text {POR, } 60 \mathrm{~ms}}$ | VDD rise time 60 ms |  | 23 |  | ms |
| $\mathrm{t}_{\text {PINR }}$ | If a GPIO pin is configured as reset, the maximum time taken to pull up the pin and release reset after power on reset. Dependent on the pin capacitive load $(C)^{10}: t=5 R C, R$ $=13 \mathrm{kOhm}$ |  |  |  |  |
| $\mathrm{t}_{\text {PINR,500nF }}$ | $\mathrm{C}=500 \mathrm{nF}$ |  |  | 32.5 | ms |
| $t_{\text {PINR,10uF }}$ | $\mathrm{C}=10 \mathrm{uF}$ |  |  | 650 | ms |
| $\mathrm{t}_{\text {R2ON }}$ | Time from reset to ON (CPU execute) |  |  |  |  |
| $\mathrm{t}_{\text {R2ON,NOTCONF }}$ | If reset pin not configured | tPOR |  |  | ms |
| $\mathrm{t}_{\text {R2ON,CONF }}$ | If reset pin configured | tPOR + tPINR |  |  | ms |
| toff2ON | Time from OFF to CPU execute |  | 16.5 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {IDLE2CPU }}$ | Time from IDLE to CPU execute |  | 3.0 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {EVTSET,CL1 }}$ | Time from HW event to PPI event in Constant Latency System ON mode |  | 0.0625 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {EVTSET,CLO }}$ | Time from HW event to PPI event in Low Power System ON mode |  | 0.0625 |  | $\mu \mathrm{s}$ |

### 5.3.10.2 Power fail comparator

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {POF }}$ | Nominal power level warning thresholds (falling supply voltage). Levels are configurable between Min. and Max. in 100 mV increments. | 1.7 |  | 2.8 | V |
| $V_{\text {POFTOL }}$ | Threshold voltage tolerance |  | $\pm 1$ | $\pm 5$ | \% |
| $\mathrm{V}_{\text {POFHYST }}$ | Threshold voltage hysteresis |  | 50 |  | mV |
| $\mathrm{V}_{\text {BOR, OfF }}$ | Brown out reset voltage range SYSTEM OFF mode | 1.2 |  | 1.7 | V |
| $V_{\text {BOR,ON }}$ | Brown out reset voltage range SYSTEM ON mode | 1.48 |  | 1.7 | V |

### 5.4 CLOCK — Clock control

The clock control system can source the system clocks from a range of internal or external high and low frequency oscillators and distribute them to modules based upon a module's individual requirements. Clock distribution is automated and grouped independently by module to limit current consumption in unused branches of the clock tree.

Listed here are the main features for CLOCK:

- 64 MHz on-chip oscillator
- 64 MHz crystal oscillator, using external 32 MHz crystal
- $32.768 \mathrm{kHz}+/-500 \mathrm{ppm}$ RC oscillator
- 32.768 kHz crystal oscillator, using external 32.768 kHz crystal
- 32.768 kHz oscillator synthesized from 64 MHz oscillator
- Firmware (FW) override control of oscillator activity for low latency start up
- Automatic oscillator and clock control, and distribution for ultra-low power

[^5]

Figure 17: Clock control

### 5.4.1 HFCLK clock controller

The HFCLK clock controller provides the following clocks to the system.

- HCLK64M: 64 MHz CPU clock
- PCLK1M: 1 MHz peripheral clock
- PCLK16M: 16 MHz peripheral clock
- PCLK32M: 32 MHz peripheral clock

The HFCLK controller supports the following high frequency clock (HFCLK) sources:

- 64 MHz internal oscillator (HFINT)
- 64 MHz crystal oscillator (HFXO)

For illustration, see Clock control on page 84.
When the system requests one or more clocks from the HFCLK controller, the HFCLK controller will automatically provide them. If the system does not request any clocks provided by the HFCLK controller, the controller will enter a power saving mode.

These clocks are only available when the system is in ON mode. When the system enters ON mode, the internal oscillator (HFINT) clock source will automatically start to be able to provide the required HFCLK clock(s) for the system.

The HFINT will be used when HFCLK is requested and HFXO has not been started. The HFXO is started by triggering the HFCLKSTART task and stopped using the HFCLKSTOP task. A HFCLKSTARTED event will be generated when the HFXO has started and its frequency is stable.
The HFXO must be running to use the RADIO or the calibration mechanism associated with the 32.768 kHz RC oscillator.

### 5.4.1.1 64 MHz crystal oscillator (HFXO)

The 64 MHz crystal oscillator (HFXO) is controlled by a 32 MHz external crystal

The LFCLK clock is stopped by triggering the LFCLKSTOP task.
It is not allowed to write to register LFCLKSRC on page 91 when the LFCLK is running.
A LFCLKSTOP task will stop the LFCLK oscillator. However, the LFCLKSTOP task can only be triggered after the STATE field in register LFCLKSTAT on page 90 indicates a 'LFCLK running' state.

The LFCLK clock controller and all of the LFCLK clock sources are always switched off when in OFF mode.

### 5.4.2.1 32.768 kHz RC oscillator (LFRC)

The default source of the low frequency clock (LFCLK) is the 32.768 kHz RC oscillator (LFRC).
The LFRC frequency will be affected by variation in temperature. The LFRC oscillator can be calibrated to improve accuracy by using the HFXO as a reference oscillator during calibration. See Table 32.768 kHz RC oscillator (LFRC) on page 92 for details on the default and calibrated accuracy of the LFRC oscillator. The LFRC oscillator does not require additional external components.

### 5.4.2.2 Calibrating the 32.768 kHz RC oscillator

After the 32.768 kHz RC oscillator is started and running, it can be calibrated by triggering the CAL task. In this case, the HFCLK will be temporarily switched on and used as a reference.

A DONE event will be generated when calibration has finished. The calibration mechanism will only work as long as HFCLK is generated from the HFCLK crystal oscillator, it is therefore necessary to explicitly start this crystal oscillator before calibration can be started, see HFCLKSTART task.

It is not allowed to stop the LFRC during an ongoing calibration.

### 5.4.2.3 Calibration timer

The calibration timer can be used to time the calibration interval of the 32.768 kHz RC oscillator.
The calibration timer is started by triggering the CTSTART task and stopped by triggering the CTSTOP task. The calibration timer will always start counting down from the value specified in CTIV and generate a CTTO timeout event when it reaches 0 . The Calibration timer will stop by itself when it reaches 0 .


Figure 19: Calibration timer
Due to limitations in the calibration timer, only one task related to calibration, that is, CAL, CTSTART and CTSTOP, can be triggered for every period of LFCLK.

### 5.4.2.4 32.768 kHz crystal oscillator (LFXO)

For higher LFCLK accuracy the low frequency crystal oscillator (LFXO) must be used.
The following external clock sources are supported:

- Low swing clock signal applied to the XL1 pin. The XL2 pin shall then be grounded.
- Rail-to-rail clock signal applied to the XL1 pin. The XL2 pin shall then be grounded or left unconnected.

The LFCLKSRC on page 91 register controls the clock source, and its allowed swing. The truth table for various situations is as follows:

### 5.4.3 Registers

| Base address | Peripheral | Instance | Description | Configuration |
| :--- | :--- | :--- | :--- | :--- |
| $0 \times 40000000$ | CLOCK | CLOCK | Clock control |  |

Table 17: Instances

| Register | Offset | Description |
| :--- | :--- | :--- |
| TASKS_HFCLKSTART | $0 \times 000$ | Start HFCLK crystal oscillator |
| TASKS_HFCLKSTOP | $0 \times 004$ | Stop HFCLK crystal oscillator |
| TASKS_LFCLKSTART | $0 \times 008$ | Start LFCLK source |
| TASKS_LFCLKSTOP | $0 \times 00$ C | Stop LFCLK source |
| TASKS_CAL | $0 \times 010$ | Start calibration of LFRC oscillator |
| TASKS_CTSTART | $0 \times 014$ | Start calibration timer |
| TASKS_CTSTOP | $0 \times 018$ | Stop calibration timer |
| EVENTS_HFCLKSTARTEL | $0 \times 100$ | HFCLK oscillator started |
| EVENTS_LFCLKSTARTED | LFCLK started |  |
| EVENTS_DONE | $0 \times 104$ | Calibration of LFCLK RC oscillator complete event |
| EVENTS_CTTO | $0 \times 110$ | Calibration timer timeout |
| INTENSET | $0 \times 304$ | Enable interrupt |
| INTENCLR | $0 \times 308$ | Disable interrupt |
| HFCLKRUN | $0 \times 408$ | Status indicating that HFCLKSTART task has been triggered |
| HFCLKSTAT | $0 \times 40 C$ | HFCLK status |
| LFCLKRUN | $0 \times 414$ | Status indicating that LFCLKSTART task has been triggered |
| LFCLKSTAT | $0 \times 418$ | LFCLK status |
| LFCLKSRCCOPY | $0 \times 41 C$ | Copy of LFCLKSRC register, set when LFCLKSTART task was triggered |
| LFCLKSRC | $0 \times 518$ | Clock source for the LFCLK |
| CTIV | $0 \times 538$ |  |

Table 18: Register Overview

### 5.4.3.1 INTENSET

## Address offset: 0x304

## Enable interrupt




### 5.4.3.2 INTENCLR

## Address offset: 0x308

Disable interrupt

| Bit number |  |  | 3130292827 | 262524 | 232221201918171615 | 14131211109 |  | 6 | 5 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  |  | A |
| Reset 0x00000000 |  |  | 00000 | 000 | 000000000 | 000000 |  |  | 0 |  |  |  | 0 | 0 |
| Id | RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |
| A | RW HFCLKSTARTED |  |  |  | Write '1' to Disable interrupt for HFCLKSTARTED event |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | See EVENTS_HFCLKSTARTED |  |  |  |  |  |  |  |  |  |
|  |  | Clear | 1 |  | Disable |  |  |  |  |  |  |  |  |  |
|  |  | Disabled | 0 |  | Read: Disabled |  |  |  |  |  |  |  |  |  |
|  |  | Enabled | 1 |  | Read: Enabled |  |  |  |  |  |  |  |  |  |
| B | RW LFCLKSTARTED |  |  |  | Write ' 1 ' to Disable interrupt for LFCLKSTARTED event |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | See EVENTS_LFCLKSTARTED |  |  |  |  |  |  |  |  |  |
|  |  | Clear | 1 |  | Disable |  |  |  |  |  |  |  |  |  |
|  |  | Disabled | 0 |  | Read: Disabled |  |  |  |  |  |  |  |  |  |
|  |  | Enabled | 1 |  | Read: Enabled |  |  |  |  |  |  |  |  |  |
| C | RW DONE |  |  |  | Write '1' to Disable interrupt for DONE event |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | See EVENTS_DONE |  |  |  |  |  |  |  |  |  |
|  |  | Clear | 1 |  | Disable |  |  |  |  |  |  |  |  |  |
|  |  | Disabled | 0 |  | Read: Disabled |  |  |  |  |  |  |  |  |  |
|  |  | Enabled | 1 |  | Read: Enabled |  |  |  |  |  |  |  |  |  |
| D | RW CTTO |  |  |  | Write ' 1 ' to Disable interrupt for CTTO event |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | See EVENTS_CTTO |  |  |  |  |  |  |  |  |  |
|  |  | Clear | 1 |  | Disable |  |  |  |  |  |  |  |  |  |
|  |  | Disabled | 0 |  | Read: Disabled |  |  |  |  |  |  |  |  |  |
|  |  | Enabled | 1 |  | Read: Enabled |  |  |  |  |  |  |  |  |  |

### 5.4.3.3 HFCLKRUN

## Address offset: 0x408

Status indicating that HFCLKSTART task has been triggered


### 5.4.3.4 HFCLKSTAT

Address offset: 0x40C
HFCLK status


### 5.4.3.5 LFCLKRUN

## Address offset: 0x414

Status indicating that LFCLKSTART task has been triggered


### 5.4.3.6 LFCLKSTAT

Address offset: 0x418
LFCLK status


### 5.4.3.7 LFCLKSRCCOPY

## Address offset: 0x41C

## Copy of LFCLKSRC register, set when LFCLKSTART task was triggered

| Bit number |  |  |  | 3130292827262524 |  |  |  |  | 2322212019 |  |  | 18171615 |  |  | 14131211 |  |  |  | 10 |  | 98 |  | 7 | 6 | 54 |  | $\begin{array}{lllll}3 & 2 & 1 & 0\end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | A A |
| Reset 0x00000000 |  |  |  |  | 000 | 0 | 0 | 00 | 0 | 000 | 0 |  | 000 | 0 |  | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 |
| Id | RW | Field | Value Id | Value |  |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A | R | SRC |  |  |  |  |  |  | Clock source |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | RC | 0 |  |  |  |  |  | 2.768 kHz R | RC | os | scillator |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Xtal | 1 |  |  |  |  |  | 2.768 kHz cr | cry | sta | al oscilla | lato |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Synth | 2 |  |  |  |  |  | 2.768 kHz s | syn | nth | hesized fror | fro | m | HF | CLK |  |  |  |  |  |  |  |  |  |  |  |  |

### 5.4.3.8 LFCLKSRC

## Address offset: 0x518

Clock source for the LFCLK


### 5.4.3.9 CTIV ( Retained )

Address offset: 0x538
This register is a retained register

## Calibration timer interval



### 5.4.4 Electrical specification

### 5.4.4.1 64 MHz internal oscillator (HFINT)

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {NOM_HFINT }}$ | Nominal output frequency |  | 64 |  | MHz |
| $\mathrm{f}_{\text {TOL_HFINT }}$ | Frequency tolerance |  | < $\pm 1.5$ | $< \pm 8$ | \% |
| $\mathrm{t}_{\text {START_HFINT }}$ | Startup time |  | 3 |  | us |

### 5.4.4.2 64 MHz crystal oscillator (HFXO)

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {NOM_HFXO }}$ | Nominal output frequency |  | 64 |  | MHz |
| $\mathrm{f}_{\text {XTAL_HFXO }}$ | External crystal frequency |  | 32 |  | MHz |
| $\mathrm{f}_{\text {TOL_HFXO }}$ | Frequency tolerance requirement for 2.4 GHz proprietary radio applications |  |  | $\pm 60$ | ppm |
| $\mathrm{f}_{\text {TOL_HFXO_BLE }}$ | Frequency tolerance requirement, Bluetooth low energy applications |  |  | $\pm 40$ | ppm |
| $\mathrm{C}_{\text {L_HFXO }}$ | Load capacitance |  |  | 12 | pF |
| $\mathrm{C}_{0}$ _HFXO | Shunt capacitance |  |  | 7 | pF |
| $\mathrm{RS}_{\text {_HFXO_7PF }}$ | Equivalent series resistance $\mathrm{CO}=7 \mathrm{pF}$ |  |  | 60 | ohm |
| $\mathrm{RS}_{\text {_ }}$ HFXO_5PF | Equivalent series resistance $\mathrm{CO}=5 \mathrm{pF}$ |  |  | 60 | ohm |
| $\mathrm{RS}_{\text {- }}$ HFXO_3PF | Equivalent series resistance $\mathrm{CO}=3 \mathrm{pF}$ |  |  | 100 | ohm |
| $\mathrm{P}_{\text {D_HFXO }}$ | Drive level |  |  | 100 | uW |
| CPin_hfxo | Input capacitance XC1 and XC2 |  | 4 |  | pF |
| $\mathrm{t}_{\text {START_HFXO }}$ | Startup time |  | 0.36 |  | ms |

### 5.4.4.3 32.768 kHz RC oscillator (LFRC)

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {NOM_LFRC }}$ | Nominal frequency |  | 32.768 |  | kHz |
| $\mathrm{f}_{\text {TOL_LFRC }}$ | Frequency tolerance |  |  | $\pm 2$ | \% |
| $\mathrm{f}_{\text {TOL_CAL_LFRC }}$ | Frequency tolerance for LFRC after calibration ${ }^{11}$ |  |  | $\pm 500$ | ppm |
| $\mathrm{t}_{\text {START_LFRC }}$ | Startup time for 32.768 kHz RC oscillator |  | 600 |  | us |

### 5.4.4.4 32.768 kHz crystal oscillator (LFXO)

[^6]| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {NOM_LFXO }}$ | Crystal frequency |  | 32.768 |  | kHz |
| $\mathrm{f}_{\text {TOL_L }}$ LXO_BLE | Frequency tolerance requirement for BLE stack |  |  | $\pm 250$ | ppm |
| $\mathrm{f}_{\text {ToL_LFXO_ANT }}$ | Frequency tolerance requirement for ANT stack |  |  | $\pm 50$ | ppm |
| $\mathrm{C}_{\text {L_L }}$ LfXO | Load capacitance |  |  | 12.5 | pF |
| $\mathrm{C}_{0}$ Lfxo | Shunt capacitance |  |  | 2 | pF |
| RS_LfXO | Equivalent series resistance |  |  | 100 | kohm |
| P D_L $^{\text {LfXo }}$ | Drive level |  |  | 1 | uW |
| $\mathrm{C}_{\text {pin }}$ | Input capacitance on XL1 and XL2 pads |  | 4 |  | pF |
| $\mathrm{t}_{\text {Start_Lfxo }}$ | Startup time for 32.768 kHz crystal oscillator |  | 0.25 |  | S |
| $\mathrm{V}_{\text {AMP_IN_XO_L }}$ LOW | Peak to peak amplitude for external low swing clock. Input signal must not swing outside supply rails. | 200 |  | 1000 | mV |

### 5.4.4.5 32.768 kHz synthesized from HFCLK (LFSYNT)

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {NOM_LFSYNT }}$ | Nominal frequency |  | 32.768 |  | kHz |
| $\mathrm{f}_{\text {TOL_LFSYNT }}$ | Frequency tolerance in addition to HFLCK tolerance ${ }^{12}$ |  | 8 |  | ppm |
| $\mathrm{t}_{\text {START_LFSYNT }}$ | Startup time for synthesized 32.768 kHz |  | 100 |  | us |

[^7]
## 6 Peripherals

### 6.1 Peripheral interface

Peripherals are controlled by the CPU by writing to configuration registers and task registers. Peripheral events are indicated to the CPU by event registers and interrupts if they are configured for a given event.


Figure 21: Tasks, events, shortcuts, and interrupts

### 6.1.1 Peripheral ID

Every peripheral is assigned a fixed block of $0 \times 1000$ bytes of address space, which is equal to $1024 \times 32$ bit registers.

See Instantiation on page 17 for more information about which peripherals are available and where they are located in the address map.

There is a direct relationship between the peripheral ID and base address. For example, a peripheral with base address $0 \times 40000000$ is assigned ID=0, a peripheral with base address $0 \times 40001000$ is assigned ID=1, and a peripheral with base address 0x4001F000 is assigned ID=31.

Peripherals may share the same ID, which may impose one or more of the following limitations:

- Some peripherals share some registers or other common resources.
- Operation is mutually exclusive. Only one of the peripherals can be used at a time.
- Switching from one peripheral to another must follow a specific pattern (disable the first, then enable the second peripheral).


### 6.1.2 Peripherals with shared ID

In general, and with the exception of ID 0, peripherals sharing an ID and base address may not be used simultaneously. The user can only enable one at the time on this specific ID.

When switching between two peripherals that share an ID, the user should do the following to prevent unwanted behavior:

- Disable the previously used peripheral
- Remove any PPI connections set up for the peripheral that is being disabled
- Clear all bits in the INTEN register, i.e. INTENCLR $=0 x F F F F F F F F$.
- Explicitly configure the peripheral that you enable and do not rely on configuration values that may be inherited from the peripheral that was disabled.
- Enable the now configured peripheral.

See Instantiation on page 17 to see which peripherals are sharing ID.

### 6.1.3 Peripheral registers

Most peripherals feature an ENABLE register. Unless otherwise specified in the relevant chapter, the peripheral registers (in particular the PSEL registers) must be configured before enabling the peripheral. Note that the peripheral must be enabled before tasks and events can be used.

### 6.1.4 Bit set and clear

Registers with multiple single-bit bit fields may implement the "set-and-clear" pattern. This pattern enables firmware to set and clear individual bits in a register without having to perform a read-modifywrite operation on the main register.

This pattern is implemented using three consecutive addresses in the register map where the main register is followed by a dedicated SET and CLR register in that order.

The SET register is used to set individual bits in the main register while the CLR register is used to clear individual bits in the main register. Writing a ' 1 ' to a bit in the SET or CLR register will set or clear the same bit in the main register respectively. Writing a ' 0 ' to a bit in the SET or CLR register has no effect. Reading the SET or CLR registers returns the value of the main register.

Restriction: The main register may not be visible and hence not directly accessible in all cases.

### 6.1.5 Tasks

Tasks are used to trigger actions in a peripheral, for example, to start a particular behavior. A peripheral can implement multiple tasks with each task having a separate register in that peripheral's task register group.

A task is triggered when firmware writes a ' 1 ' to the task register or when the peripheral itself or another peripheral toggles the corresponding task signal. See Tasks, events, shortcuts, and interrupts on page 94.

### 6.1.6 Events

Events are used to notify peripherals and the CPU about events that have happened, for example, a state change in a peripheral. A peripheral may generate multiple events with each event having a separate register in that peripheral's event register group.

An event is generated when the peripheral itself toggles the corresponding event signal, and the event register is updated to reflect that the event has been generated. See Tasks, events, shortcuts, and interrupts on page 94. An event register is only cleared when firmware writes a ' 0 ' to it.

Events can be generated by the peripheral even when the event register is set to '1'.

### 6.1.7 Shortcuts

A shortcut is a direct connection between an event and a task within the same peripheral. If a shortcut is enabled, its associated task is automatically triggered when its associated event is generated.

Using a shortcut is the equivalent to making the same connection outside the peripheral and through the PPI. However, the propagation delay through the shortcut is usually shorter than the propagation delay through the PPI.

Shortcuts are predefined, which means their connections cannot be configured by firmware. Each shortcut can be individually enabled or disabled through the shortcut register, one bit per shortcut, giving a maximum of 32 shortcuts for each peripheral.

### 6.1.8 Interrupts

All peripherals support interrupts. Interrupts are generated by events.
A peripheral only occupies one interrupt, and the interrupt number follows the peripheral ID. For example, the peripheral with ID=4 is connected to interrupt number 4 in the Nested Vectored Interrupt Controller (NVIC).

Using the INTEN, INTENSET and INTENCLR registers, every event generated by a peripheral can be configured to generate that peripheral's interrupt. Multiple events can be enabled to generate interrupts simultaneously. To resolve the correct interrupt source, the event registers in the event group of peripheral registers will indicate the source.

Some peripherals implement only INTENSET and INTENCLR, and the INTEN register is not available on those peripherals. Refer to the individual chapters for details. In all cases, however, reading back the INTENSET or INTENCLR register returns the same information as in INTEN.

Each event implemented in the peripheral is associated with a specific bit position in the INTEN, INTENSET and INTENCLR registers.

The relationship between tasks, events, shortcuts, and interrupts is shown in Tasks, events, shortcuts, and interrupts on page 94.

## Interrupt clearing

When clearing an interrupt by writing " 0 " to an event register, or disabling an interrupt using the INTENCLR register, it can take up to four CPU clock cycles to take effect. This means that an interrupt may reoccur immediatelly even if a new event has not come, if the program exits an interrupt handler after the interrupt is cleared or disabled, but before four clock cycles have passed.

Important: To avoid an interrupt reoccurring before a new event has come, the program should perform a read from one of the peripheral registers, for example, the event register that has been cleared, or the INTENCLR register that has been used to disable the interrupt.

This will cause a one to three-cycle delay and ensure the interrupt is cleared before exiting the interrupt handler. Care should be taken to ensure the compiler does not remove the read operation as an optimization. If the program can guarantee a four-cycle delay after event clear or interrupt disable another way, then a read of a register is not required.

### 6.2 AAR - Accelerated address resolver

Accelerated address resolver is a cryptographic support function for implementing the "Resolvable Private Address Resolution Procedure" described in the Bluetooth Core specification v4.0. "Resolvable private address generation" should be achieved using ECB and is not supported by AAR.

The procedure allows two devices that share a secret key to generate and resolve a hash based on their device address. The AAR block enables real-time address resolution on incoming packets when configured as described in this chapter. This allows real-time packet filtering (whitelisting) using a list of known shared keys (Identity Resolving Keys (IRK) in Bluetooth).

### 6.2.1 EasyDMA

The AAR implements EasyDMA for reading and writing to the RAM. The EasyDMA will have finished accessing the RAM when the END, RESOLVED, and NOTRESOLVED events are generated.

If the IRKPTR on page 101, ADDRPTR on page 101 and the SCRATCHPTR on page 101 is not pointing to the Data RAM region, an EasyDMA transfer may result in a HardFault or RAM corruption. See Memory on page 15 for more information about the different memory regions.

### 6.2.2 Resolving a resolvable address

As per Bluetooth specification, a private resolvable address is composed of six bytes.


Figure 22: Resolvable address
To resolve an address the ADDRPTR on page 101 register must point to the start of packet. The resolver is started by triggering the START task. A RESOLVED event is generated when the AAR manages to resolve the address using one of the Identity Resolving Keys (IRK) found in the IRK data structure. The AAR will use the IRK specified in the register IRKO to IRK15 starting from IRKO. How many to be used is specified by the NIRK register. The AAR module will generate a NOTRESOLVED event if it is not able to resolve the address using the specified list of IRKs.

The AAR will go through the list of available IRKs in the IRK data structure and for each IRK try to resolve the address according to the Resolvable Private Address Resolution Procedure described in the Bluetooth Specification ${ }^{13}$. The time it takes to resolve an address may vary depending on where in the list the resolvable address is located. The resolution time will also be affected by RAM accesses performed by other peripherals and the CPU. See the Electrical specifications for more information about resolution time.

The AAR will only do a comparison of the received address to those programmed in the module. And not check what type of address it actually is.

The AAR will stop as soon as it has managed to resolve the address, or after trying to resolve the address using NIRK number of IRKs from the IRK data structure. The AAR will generate an END event after it has stopped.

[^8]

Figure 23: Address resolution with packet preloaded into RAM

### 6.2.3 Use case example for chaining RADIO packet reception with address resolution using AAR

The AAR may be started as soon as the 6 bytes required by the AAR have been received by the RADIO and stored in RAM. The ADDRPTR pointer must point to the start of packet.


Figure 24: Address resolution with packet loaded into RAM by the RADIO

### 6.2.4 IRK data structure

The IRK data structure is located in RAM at the memory location specified by the IRKPTR register.

| Property | Address offset | Description |
| :---: | :---: | :---: | :---: |
| IRKO | 0 | IRK number 0 (16-byte) |
| IRK1 | 16 | IRK number 1 (16-byte) |
| IRK15 | .. | .. |
|  | 240 | IRK number 15 (16-byte) |

Table 19: IRK data structure overview

### 6.2.5 Registers

| Base address | Peripheral | Instance | Description |
| :--- | :--- | :--- | :--- | Configuration | Accelerated address resolver |
| :--- |
| $0 \times 4000 F 000$ |

Table 20: Instances

| Register | Offset | Description |
| :--- | :--- | :--- |
| TASKS_START | $0 \times 000$ | Start resolving addresses based on IRKs specified in the IRK data structure |
| TASKS_STOP | $0 \times 008$ | Stop resolving addresses |
| EVENTS_END | $0 \times 100$ | Address resolution procedure complete |


| Register | Offset | Description |
| :--- | :--- | :--- |
| EVENTS_RESOLVED | $0 \times 104$ | Address resolved |
| EVENTS_NOTRESOLVED $0 \times 108$ | Address not resolved |  |
| INTENSET | $0 \times 304$ | Enable interrupt |
| INTENCLR | $0 \times 308$ | Disable interrupt |
| STATUS | $0 \times 400$ | Resolution status |
| ENABLE | $0 \times 500$ | Enable AAR |
| NIRK | $0 \times 504$ | Number of IRKs |
| IRKPTR | $0 \times 508$ | Pointer to IRK data structure |
| ADDRPTR | $0 \times 510$ | Pointer to the resolvable address |
| SCRATCHPTR | $0 \times 514$ | Pointer to data area used for temporary storage |

Table 21: Register Overview

### 6.2.5.1 INTENSET

## Address offset: 0x304

Enable interrupt


### 6.2.5.2 INTENCLR

## Address offset: 0x308

Disable interrupt

| Bit number |  | 3130292827262524 |  | 232221201918171615141312111098 |  |  |  |  |  |  |  | 7 | $654$ |  |  | $\begin{array}{lll} 2 & 1 & 0 \\ C & B & A \\ \hline 0 & 0 & 0 \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Reset 0x00000000 |  | 0000 | 0000 | 00000 | 000 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW END |  |  |  | Write '1' to Disable interrupt for END event |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | See EVENTS_EN | ND |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Clear | 1 |  | Disable |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Disabled | 0 |  | Read: Disabled |  |  |  |  |  |  |  |  |  |  |  |  |  |



### 6.2.5.3 STATUS

## Address offset: 0x400

## Resolution status

| Bit number |  | 3130292 | 827 |  | 625 |  | 2322 | 221 | 120 |  | 18 | 17 |  |  |  | 131 | 211 | 110 | 09 | 8 | 7 |  | 65 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | A | A | A | A |
| Reset 0x00000000 |  | 000 | 0 | 0 | 0 | 0 | 00 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 |
| Id RW Field | Value Id | Value |  |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A R STATUS |  | [0..15] |  |  |  |  | The I | IRK th | that | wa | was us | used | las | ti | ime | an | add | dres | s w | was |  | olv |  |  |  |  |  |  |

### 6.2.5.4 ENABLE

Address offset: $0 \times 500$

## Enable AAR

| B | umber |  | 313 | 302 | 2928 |  | 26 | 252 | 242 | 23 | 222120 | 19 | 18 | 81716 | 15 |  | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 |  | 5 |  | 3 | 2 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | A A |
| Reset 0x00000000 |  |  | 0 | 00 | 00 | 0 | 0 | 0 | 0 | 0 | 000 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 |  | 0 | 0 | 00 |
| Id | RW Field | Value Id | Valu |  |  |  |  |  |  |  | scription |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | RW ENABLE |  |  |  |  |  |  |  |  |  | able or di | isab | ble | AAR |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Disabled | 0 |  |  |  |  |  |  |  | sable |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Enabled | 3 |  |  |  |  |  |  |  | nable |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

### 6.2.5.5 NIRK

Address offset: 0x504
Number of IRKs


### 6.2.5.6 IRKPTR

## Address offset: 0x508

## Pointer to IRK data structure

| Bit number |  | 313029282726252423222120191817161514131211109887655430210 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Id |  | A A A A | A A A A | A A A A | A | A A A | A | A A A | A | A | A | A | A | A A | A | A | A | A A |
| Reset 0x00000000 |  | 0000 | 0000 | 0000 | 0 | 000 | 0 | 000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 |
| Id RW Field | Value Id | Value |  | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A RW IRKPTR |  |  |  | Pointer to the | he IR | RK data st | struc | cture |  |  |  |  |  |  |  |  |  |  |

### 6.2.5.7 ADDRPTR

## Address offset: 0x510

Pointer to the resolvable address


### 6.2.5.8 SCRATCHPTR

Address offset: 0x514

## Pointer to data area used for temporary storage



### 6.2.6 Electrical specification

### 6.2.6.1 AAR Electrical Specification

| Symbol | Description | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {AAR }}$ | Address resolution time per IRK. Total time for several IRKs is given as ( $1 \mu \mathrm{~s}+\mathrm{n}^{*} \mathrm{t}$ _AAR), where n is the number of IRKs. (Given priority to the actual destination RAM block). | .. | .. | .. | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {AAR, } 8}$ | Time for address resolution of 8 IRKs. (Given priority to the actual destination RAM block). |  | 48 |  | $\mu \mathrm{s}$ |

### 6.3 BPROT - Block protection

The mechanism for protecting non-volatile memory can be used to prevent erroneous application code from erasing or writing to protected blocks.

Non-volatile memory can be protected from erases and writes depending on the settings in the CONFIG registers. One bit in a CONFIG register represents one protected block of 4 kB . There are multiple CONFIG registers to cover the whole range of the flash. Protected regions of program memory on page 102 illustrates how the CONFIG bits map to the program memory space.

Important: If an erase or write to a protected block is detected, the CPU will hard fault. If an ERASEALL operation is attempted from the CPU while any block is protected it will be blocked and the CPU will hard fault.

On reset, all the protection bits are cleared. To ensure safe operation, the first task after reset must be to set the protection bits. The only way of clearing protection bits is by resetting the device from any reset source.

The protection mechanism is turned off when in debug mode (a debugger is connected) and the DISABLEINDEBUG register is set to disable.

Program Memory


Figure 25: Protected regions of program memory

### 6.3.1 Registers

| Base address | Peripheral | Instance | Description | Configuration |
| :--- | :--- | :--- | :--- | :--- |
| $0 \times 40000000$ | BPROT | BPROT | Block protect |  |

Table 22: Instances

| Register | Offset | Description |
| :--- | :--- | :--- |
| CONFIG0 | $0 \times 600$ | Block protect configuration register 0 |
| CONFIG1 | $0 \times 604$ | Block protect configuration register 1 |
| DISABLEINDEBUG | $0 \times 608$ | Disable protection mechanism in debug mode |
|  | $0 \times 60 C$ |  |

## Table 23: Register Overview

### 6.3.1.1 CONFIGO

## Address offset: 0x600

Block protect configuration register 0




### 6.3.1.2 CONFIG1

## Address offset: 0x604

## Block protect configuration register 1




### 6.3.1.3 DISABLEINDEBUG

## Address offset: 0x608

Disable protection mechanism in debug mode


### 6.4 CCM - AES CCM mode encryption

Cipher block chaining - message authentication code (CCM) mode is an authenticated encryption algorithm designed to provide both authentication and confidentiality during data transfer. CCM combines counter mode encryption and CBC-MAC authentication. The CCM terminology "Message authentication

Figure 134: Top layer

Figure 135: Bottom layer

## Important: No components in bottom layer.

Recommended operating conditions

The operating conditions are the physical parameters that the chip can operate within.

| Symbol | Parameter | Notes | Min. | Nom. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VDD | Supply voltage, independent of DCDC enable |  | 1.7 | 3.0 | 3.6 | V |
| $t_{\text {R_VDD }}$ | Supply rise time ( 0 V to 1.7 V ) |  |  |  | 60 | ms |
| TA | Operating temperature |  | -40 | 25 | 85 | ${ }^{\circ} \mathrm{C}$ |

Table 107: Recommended operating conditions

Important: The on-chip power-on reset circuitry may not function properly for rise times longer than the specified maximum.

## Absolute maximum ratings

Maximum ratings are the extreme limits to which the chip can be exposed for a limited amount of time without permanently damaging it. Exposure to absolute maximum ratings for prolonged periods of time may affect the reliability of the device.

|  | Note | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Supply voltages |  |  |  |  |
| VDD |  | -0.3 | +3.9 | v |
| vss |  |  | 0 | v |
| I/O pin voltage |  |  |  |  |
| $\mathrm{V}_{1 / 0}, \mathrm{VDD} \leq 3.6 \mathrm{~V}$ |  | -0.3 | $V D D+0.3 \mathrm{~V}$ | v |
| $\mathrm{V}_{1 / 0}, \mathrm{VDD}>3.6 \mathrm{~V}$ |  | -0.3 | 3.9 V | v |
| Radio |  |  |  |  |
| RF input level |  |  | 10 | dBm |
| Environmental (QFN package) |  |  |  |  |
| Storage temperature |  | -40 | +125 | ${ }^{\circ} \mathrm{C}$ |
| MSL | Moisture Sensitivity Level |  | 2 |  |
| ESD HBM | Human Body Model |  | 4 | kV |
| ESD CDM | Charged Device Model |  | 1000 | v |
| Flash memory |  |  |  |  |
| Endurance |  | 10000 |  | Write/erase cycles |
| Retention |  | 10 years at $40^{\circ} \mathrm{C}$ |  |  |

Table 108: Absolute maximum ratings


# ATTENTION 

OBSERVE PRECAUTION FOR HANDLING ELECTROSTATIC SENSITIVE DEVICE
HBM (Human Body Model): Class 3A

## Ordering information

This chapter contains information on IC marking, ordering codes, and container sizes.

### 10.1 IC marking

The IC package is marked like described below.

| $N$ | 5 | 2 | 8 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $<P$ | $P>$ | $<V$ | $V\rangle$ | $<H\rangle$ | $\langle P\rangle$ |
| $<Y$ | $Y\rangle$ | $<W$ | $W\rangle$ | $<L$ | $L\rangle$ |

Figure 136: Package marking

### 10.2 Box labels

Here are the box labels used for the IC.


Figure 137: Inner box label


Figure 138: Outer box label

### 10.3 Order code

Here are the nRF52810 order codes and definitions.

| n | R | F | 5 | 2 | 8 | 1 | 0 | - | $\langle\mathrm{P}$ | $\mathrm{P}\rangle$ | $\langle\mathrm{V}$ | $\mathrm{V}\rangle$ | - | $\langle\mathrm{C}$ | $\mathrm{C}\rangle$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 139: Order code

| Abbrevitation | Definition and implemented codes |
| :---: | :---: |
| N52/nRF52 | nRF52 Series product |
| 810 | Part code |
| <PP> | Package variant code |
| <VV> | Function variant code |
| <H><P><F> | Build code <br> H - Hardware version code <br> P - Production configuration code (production site, etc.) <br> F - Firmware version code (only visible on shipping container label) |
| <YY><WW><LL> | Tracking code <br> YY - Year code <br> WW - Assembly week number <br> LL - Wafer lot code |
| <CC> | Container code |

Table 109: Abbreviations

### 10.4 Code ranges and values

Defined here are the nRF52810 code ranges and values.

| <PP> | Package | Size (mm) | Pin/Ball count | Pitch (mm) |
| :--- | :--- | :--- | :--- | :--- |
| QF | QFN | $6 \times 6$ | 48 | 0.4 |
| QC | QFN | $5 \times 5$ | 32 | 0.5 |

Table 110: Package variant codes

| <VV> | Flash (kB) | RAM (kB) |
| :--- | :--- | :--- |
| AA | 192 | 24 |

Table 111: Function variant codes

| $\langle\mathrm{H}\rangle$ | Description |
| :--- | :--- |
| $[$ A . Z] | Hardware version/revision identifier (incremental) |

Table 112: Hardware version codes

| $\langle P\rangle$ | Description |
| :--- | :--- |
| $[0 \ldots 9]$ | Production device identifier (incremental) |
| $[$ A . . Z] | Engineering device identifier (incremental) |

Table 113: Production configuration codes

| <F> | Description |
| :--- | :--- |
| $[$ A . N, P. . Z] | Version of preprogrammed firmware |
| $[0]$ | Delivered without preprogrammed firmware |

Table 114: Production version codes

| <YY> | Description |
| :--- | :--- |
| $[15 \ldots 99]$ | Production year: 2015 to 2099 |

Table 115: Year codes

| <WW> | Description |
| :--- | :--- |
| $[1.52]$ | Week of production |

Table 116: Week codes

| <LL> | Description |
| :--- | :--- |
| $[$ AA . . ZZ] | Wafer production lot identifier |

Table 117: Lot codes

| <CC> | Description |
| :--- | :--- |
| R7 | 7" Reel |
| R | 13" Reel |
| T | Tray |

Table 118: Container codes

### 10.5 Product options

Defined here are the nRF52810 product options.

| Order code | MOQ (minimum ordering <br> quantity) | Comment |
| :--- | :--- | :--- |
| nRF52810-QFAA-R7 | 1000 | Availability to be announced. |
| nRF52810-QFAA-R | 3000 |  |
|  | 490 |  |
| nR52810-QCAA-R7 | 1000 |  |
| nRF52810-QCAA-R | 3000 |  |
| nRF52810-QCAA-T | 490 |  |

Table 119: nRF IC order codes

| Order code | Description |
| :--- | :--- |
| nRF52-DK | nRF52832 development kit with tools to support <br> nRF52810 development. |

Table 120: Development tools order code

## Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out of the application or use of any product or circuits described herein.

## Life support applications

Nordic Semiconductor's products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Nordic Semiconductor ASA customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper use or sale.

## RoHS and REACH statement

Nordic Semiconductor's products meet the requirements of Directive 2011/65/EU of the European Parliament and of the Council on the Restriction of Hazardous Substances (RoHS 2) and the requirements of the REACH regulation (EC 1907/2006) on Registration, Evaluation, Authorization and Restriction of Chemicals.

The SVHC (Substances of Very High Concern) candidate list is continually being updated. Complete hazardous substance reports, material composition reports and latest version of Nordic's REACH statement can be found on our website www.nordicsemi.com.


No. S03


[^0]:    ${ }^{1}$ Using IAR v6.50.1.4452 with flags --endian=little --cpu=Cortex-M4 -e --fpu=VFPv4_sp -Ohs -no_size_constraints

[^1]:    2 The page must be erased when either $n_{\text {WRITE,BLOCK }}$ or $n_{\text {WRITE }}$ is exceeded.

[^2]:    ${ }^{3}$ Applying only when CPU is running
    ${ }^{4}$ Applying only when HFXO is running

[^3]:    ${ }^{\text {a }}$ All debug components excluding SWJ-DP. See Debug on page 50 chapter for more information about the different debug components in the system.
    ${ }^{5}$ Reset from CPU lockup is disabled if the device is in debug interface mode. CPU lockup is not possible in System OFF.
    6 The Debug components will not be reset if the device is in debug interface mode.
    7 RAM is not reset on wakeup from OFF mode, but depending on settings in the RAM register parts, or the whole RAM, may not be retained after the device has entered System OFF mode.
    8 Watchdog reset is not available in System OFF.

[^4]:    ${ }^{9}$ A step increase in supply voltage of 300 mV or more, with rise time of 300 ms or less, within the valid supply range, may result in a system reset.

[^5]:    10 To decrease maximum time a device could hold in reset, a strong external pullup resistor can be used.

[^6]:    ${ }^{11}$ Constant temperature within $\pm 0.5^{\circ} \mathrm{C}$ and calibration performed at least every 8 seconds

[^7]:    ${ }^{12}$ Frequency tolerance will be derived from the HFCLK source clock plus the LFSYNT tolerance

[^8]:    ${ }^{13}$ Bluetooth Specification Version 4.0 [Vol 3] chapter 10.8.2.3.

