

SmartElex Absolute Digital Barometer - LPS28DFW

The Absolute Digital Barometer - LPS28DFW offer a unique barometer breakout
featuring the LPS28DFW from STMicroelectronics©. The LPS28DFW is an absolute
barometer with a water-resistant package making it perfect for pressure measurement
applications where the sensor is exposed to or even submerged in water1.

https://learn.sparkfun.com/tutorials/sparkfun-absolute-digital-barometer---lps28dfw-qwiic-hookup-guide?_gl=1*18rd7zq*_ga*MzgwMjU0MjAxLjE3MDM5MTAzNDE.*_ga_T369JS7J9N*MTcwMzkxMDM0MC4xLjEuMTcwMzkxNDY1Mi41Ni4wLjA.&_ga=2.268749432.848520174.1703910359-380254201.1703910341#LPS28DFW_Note1

Parameter Min. Typ. Max. Units Notes

Supply Voltage 1.7 - 3.6 V Breakouts run the sensor at 3.3V

Supply Current

- 1.7 -

µA

Average Selection (AVG)=4 and Output Data Rate

(ODR)=1Hz.

- 9.4 - AVG=128 and ODR=1Hz.

- 0.9 - Sensor in power-down mode.

Operating Temperature

Range

-40 - +85 °C

Operating Pressure Range

Mode 1 260 - 1260

hPa

Mode 2 260 - 4060

Pressure Sensitivity

Mode 1 - 4096 -

LSB/hPa

Mode 2 - 2048 -

Relative Pressure Accuracy Test Conditions:

Mode 1 - ±0.015 -

hPa

Temp. = 25°C Press.=800~1100hPa

Mode 2 - ±1 - Temp. = 25°C Press. = 2060~4060hPa

The sensor has two full-scale measurement ranges of 260 - 1260hPa and 260 - 4060hPa
with an absolute pressure accuracy of 0.5hPa. The LPS28DFW is composed a
piezoresistive pressure sensor with a metal lid and gel encasing to protect the sensing
elements from water and other environmental hazards.

In this guide we'll cover the features and specifications of the LPS28DFW and other
hardware present on these breakouts as well as the Arduino library to interact with the
sensor.

1. Important! While the LPS28DFW is protected from water, the rest of the
components on these breakouts are not protected by any conformal coating and can
be damaged by exposure to liquids. Users who intend to use these breakouts in
applications where the board may be exposed to water or other liquids should apply
conformal coating to the board prior to use.

LPS28DFW Absolute Pressure Sensor

The LPS28DFW from STMicroelectronics is a digital output absolute pressure sensor
with a gel-filled metal lid protecting the sensing element from moisture making it ideal
for applications such as water depth measurements or other pressure-sensing projects
in wet environments.

The LPS28DFW has two user-selectable measurement ranges (260 to 1260hPa and 260
to 4060hPa) with an absolute pressure accuracy of 0.5hPa and supports output data
rates of 1 to 200Hz. The sensor supports communication over I2C and MIPI
I3CSM interfaces (though I3C communication is not covered in this guide or the Arduino
Library). The table below outlines some of the parameters for the LPS28DFW. For a
complete overview of the sensor, refer to the datasheet.

I2C Interface

The standard size routes the I2C interface to a pair of connectors as well as a 0.1"-
spaced PTH header for users who prefer a traditional soldered connection. Both
breakouts route the sensor's interrupt (INT) pin to a PTH pin.

Both boards set the LPS28DFW's I2C address to 0x5C by default. Adjust the ADR jumper
to change to the alternate address (0x5D) or open it completely to toggle the address
using the ADR PTH pin (Standard size only). More information on this jumper in the
Solder Jumpers section below.

https://learn.sparkfun.com/tutorials/sparkfun-absolute-digital-barometer---lps28dfw-qwiic-hookup-guide#LPS28DFW_Note1

Solder Jumpers

Both LPS28DFW breakouts have three solder jumpers labeled: PWR, I2C, and ADR. The
table below outlines the jumpers' label, default state, function, and any notes about
their behavior.

Label Default

State

Function Notes

PWR CLOSED Completes the Power LED

circuit.

Open to disable the Power LED.

I2C CLOSED Pulls the SDA/SCL lines to VCC

(3.3V) through a pair of 10kΩ

resistors.

Open to disable pull-up resistors on the I2C lines.

ADR SEE NOTE Sets the I2C address of the

LPS28DFW.

I2C address is 0x5C by default. Sever the trace connecting the

center pad to the pad labeled 0x5C and connect it to the pad

labeled 0x5D to change the address.

Wiring

Connecting the LPS28DFW to Arduino:

 3V3

GND

SDA
A SCL

Conformal Coating for Waterproofing

While the LPS28DFW's gel filled cap protects the sensing element from liquid and other
environmental effects, the breakouts do not have any coating to protect the other
components from damage due to exposure to liquids. A protective coating is required
for applications that expose the board(s) to liquid.

LPS28DFW Arduino Library

Library Functions

The list below outlines and describes the functions available in the SparkFun LPS28DFW
Arduino Library. For detailed information on the parameters and use of all functions,
refer to the .cpp file in the library.

Device Initialization and Configuration

• 'int32_t begin(uint8_t address = LPS28DFW_I2C_ADDRESS_DEFAULT, TwoWire&
wirePort = Wire);' - Begin communication with the sensor over I2 at the defined
address and on the defined port. If no error occur, perform a soft reset and
initialize the sensor.

• 'int32_t init();' - Enables the BDU and IF_ADD_INC bits in the control registers.
• 'int32_t boot();' - Enables the BOOT bit in the control registers
• 'int32_t reset();' - Resets the sensor.
• 'int32_t setModeConfig(lps28dfw_md_t* mode);' - Configures the operation

mode settings for the sensor including range and ODR.
• 'int32_t getModeConfig(lps28dfw_md_t* mode);' - Returns the operation mode

settings.
• 'int32_t getStatus(lps28dfw_stat_t* status);' - Returns the sensor status bits such

as data ready, overrun, etc.

Sensor Data

• 'int32_t getSensorData();' - Get pressure data from the sensor.

Arduino LPS28DFW
SCL(A5) SCL
SDA(A4) SDA

 3.3v 3V3
GND GND

Interrupt Control and Feature Selection

• 'int32_t setInterruptMode(lps28dfw_int_mode_t* intMode);' - Configures the
interrupt pin to be either HIGH/LOW and LATCHED/PULSED.

• 'int32_t enableInterrupts(lps28dfw_pin_int_route_t* intRoute);' - Enables the
data ready and FIFO interrupt conditions.

• 'int32_t getInterruptStatus(lps28dfw_all_sources_t* status);' - Returns the status
of the interrupt flags.

FIFO Buffer Control

• 'int32_t setFIFOConfig(lps28dfw_fifo_md_t* fifoConfig);' - Sets the FIFO
configuration parameters.

• 'int32_t getFIFOConfig(lps28dfw_fifo_md_t* fifoConfig);' - Returns settigs of FIFO
buffer.

• 'int32_t getFIFOLength(uint8_t* numData);' - Returns the number of samples
stored in the FIFO buffer (up to 128).

• 'int32_t getFIFOData(lps28dfw_fifo_data_t* data, uint8_t numData);' - Gets
pressure data from the FIFO buffer.

• 'int32_t flushFIFO();' - Clear all data from the FIFO buffer.

Reference Mode Control

• 'int32_t setReferenceMode(lps28dfw_ref_md_t* mode);' - Sets the sensor to
operate in reference mode. When called it stores the latest pressure data as a
reference pressure. The reference pressure can be used with Threshold Mode to
trigger interrupts.

• 'int32_t setThresholdMode(lps28dfw_int_th_md_t* mode);' - Configures the
sensor to trigger interrupts when the pressure measured exceeds a threshold
relative to the defined reference pressure.

• 'int32_t getReferencePressure(int16_t* pressRaw);' - Returns the value stored for
the reference pressure.

Arduino Example

Now let's take a closer look at a few of the examples included in the LPS28DFW
Arduino Library.

Example - Basic Readings

The first example covers the basics of polling the LPS28DFW for pressure and
temperature data over I2C. Open the example by navigating to File > Examples >
SparkFun LPS28DFW Arduino Library > Example1_BasicReadings. Select your Board
and Port and click the Upload button. Once upload completes, open the serial
monitor with the baud set to 115200 and watch pressure and temperature data print
out.

#include <Wire.h>

#include "SparkFun_LPS28DFW_Arduino_Library.h"

// Create a new sensor object

LPS28DFW pressureSensor;

// I2C address selection

uint8_t i2cAddress = LPS28DFW_I2C_ADDRESS_DEFAULT; // 0x5C

//uint8_t i2cAddress = LPS28DFW_I2C_ADDRESS_SECONDARY; // 0x5D

void setup()

{

 // Start serial

 Serial.begin(115200);

 Serial.println("LPS28DFW Example 1 - Basic Readings!");

 // Initialize the I2C library

 Wire.begin();

 // Check if sensor is connected and initialize

 // Address is optional (defaults to 0x5C)

 while(pressureSensor.begin(i2cAddress) != LPS28DFW_OK)

 {

 // Not connected, inform user

 Serial.println("Error: LPS28DFW not connected, check wiring and I2C address!");

 // Wait a bit to see if connection is established

 delay(1000);

 }

 Serial.println("LPS28DFW connected!");

}

void loop()

{

 // Get measurements from the sensor. This must be called before accessing

 // the pressure data, otherwise it will never update

 pressureSensor.getSensorData();

 // Print temperature and pressure

 Serial.print("Temperature (C): ");

 Serial.print(pressureSensor.data.heat.deg_c);

 Serial.print("\t\t");

 Serial.print("Pressure (hPa): ");

 Serial.println(pressureSensor.data.pressure.hpa);

 // Only print every second

 delay(1000);

}

The code assumes the sensor uses the default I2C address so if you have adjusted the
ADR jumper to switch to the alternate address, comment/uncomment the line with the
correct value listed

The example attempts to initialize the sensor with default settings in I2C at the
specified address. If it cannot initialize properly, the code prints out an error in over
serial

If you see this error, double check the sensor is connected properly and set to the
correct I2C address and reset the development board or re-upload the code.

The main loop gets temperature and pressure data measurements from the sensor
every second

Try moving the sensor up and down to see the pressure data change.

