

SmartElex BME680 - Temperature, Humidity, Pressure and
Gas Sensor Breakout Board

The long awaited BME680 from Bosch gives you all the environmental sensing you
want in one small package. This little sensor
contains temperature, humidity, barometric pressure and VOC gas sensing
capabilities. All over SPI or I2C, at a great price!
Like the BME280 & BMP280, this precision sensor from Bosch can measure
humidity with ±3% accuracy, barometric pressure with ±1 hPa absolute accuracy,
and temperature with ±1.0°C accuracy. Because pressure changes with altitude, and
the pressure measurements are so good, you can also use it as an altimeter with ±1
meter or better accuracy!

The BME680 takes those sensors to the next step in that it contains a small MOX
sensor. The heated metal oxide changes resistance based on the volatile organic
compounds (VOC) in the air, so it can be used to detect gasses & alcohols such as
Ethanol, Alcohol and Carbon Monoxide and perform air quality measurements.
Note it will give you one resistance value, with overall VOC content, it cannot
differentiate gasses or alcohols.

Please note, this sensor, like all VOC/gas sensors, has variability and to get
precise measurements you will want to calibrate it against known sources! That
said, for general environmental sensors, it will give you a good idea of trends and
comparisons. We recommend that you run this sensor for 48 hours when you first
receive it to "burn it in", and then 30 minutes in the desired mode every time the
sensor is in use. This is because the sensitivity levels of the sensor will change
during early use and the resistance will slowly rise over time as the MOX warms up
to its baseline reading.

For your convenience we've pick-and-placed the sensor on a PCB with a 3.3V
regulator and some level shifting so it can be easily used with your favorite 3.3V or
5V microcontroller.

Pinouts
Power Pins:

• Vin - this is the power pin. Since the sensor chip uses 3 VDC, we have
included a voltage regulator on board that will take 3-5VDC and safely convert
it down. To power the board, give it the same power as the logic level of your
microcontroller - e.g. for a 5V micro like Arduino, use 5V

• 3Vo - this is the 3.3V output from the voltage regulator, you can grab up to
100mA from this if you like

• GND - common ground for power and logic

SPI Logic pins:

All pins going into the breakout have level shifting circuitry to make them 3-5V logic
level safe. Use whatever logic level is on Vin!

• SCK - This is the SPI Clock pin, its an input to the chip
• SDO - this is the Serial Data Out / Microcontroller In Sensor Out pin, for data

sent from the BME680 to your processor
• SDI - this is the Serial Data In / Microcontroller Out Sensor In pin, for data

sent from your processor to the BME680
• CS - this is the Chip Select pin, drop it low to start an SPI transaction. Its an

input to the chip

Wiring
You can easily wire this breakout to any microcontroller, we'll be using an Arduino
compatible. For another kind of microcontroller, as long as you have 4 available

pins it is possible to 'bit-bang SPI' or you can use two I2C pins, but usually those
pins are fixed in hardware. Just check out the library, then port the code.

SPI Wiring
Since this is a SPI-capable sensor, we can use hardware or 'software' SPI. To make
wiring identical on all microcontrollers, we'll begin with 'software' SPI. The
following pins should be used:

Arduino BME680
D13 SCK

D12 SDO
D11 SDI

D10 CS
5v OR 3.3v VIN

GND GND

• Connect Vin to the power supply, 3V or 5V is fine. Use the same voltage that
the microcontroller logic is based off of

• Connect GND to common power/data ground
• Connect the SCK pin to Digital #13 but any pin can be used later
• Connect the SDO pin to Digital #12 but any pin can be used later
• Connect the SDI pin to Digital #11 but any pin can be used later
• Connect the CS pin Digital #10 but any pin can be used later

Later on, once we get it working, we can adjust the library to use hardware SPI if
you desire, or change the pins to others.

Install Adafruit_BME680 library

To begin reading sensor data, you will need to install the Adafruit_BME680 library.
It is available from the Arduino library manager so we recommend using that.

From the IDE open up the library manager.
And type in adafruit bme680 to locate the library. Click Install

Load Demo

Open up File->Examples->Adafruit_BME680->bmp680test and upload to your
microcontroller wired up to the sensor
#include <Wire.h>

#include <SPI.h>

#include <Adafruit_Sensor.h>

#include "Adafruit_BME680.h"

#define BME_SCK 13

#define BME_MISO 12

#define BME_MOSI 11

#define BME_CS 10

#define SEALEVELPRESSURE_HPA (1013.25)

// Adafruit_BME680 bme; // I2C

//Adafruit_BME680 bme(BME_CS); // hardware SPI

Adafruit_BME680 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK);

void setup() {

 Serial.begin(9600);

 while (!Serial);

 Serial.println(F("BME680 test"));

 if (!bme.begin()) {

 Serial.println("Could not find a valid BME680 sensor, check wiring!");

 while (1);

 }

 // Set up oversampling and filter initialization

 bme.setTemperatureOversampling(BME680_OS_8X);

 bme.setHumidityOversampling(BME680_OS_2X);

 bme.setPressureOversampling(BME680_OS_4X);

 bme.setIIRFilterSize(BME680_FILTER_SIZE_3);

 bme.setGasHeater(320, 150); // 320*C for 150 ms

}

void loop() {

 if (! bme.performReading()) {

 Serial.println("Failed to perform reading :(");

 return;

 }

 Serial.print("Temperature = ");

 Serial.print(bme.temperature);

 Serial.println(" *C");

 Serial.print("Pressure = ");

 Serial.print(bme.pressure / 100.0);

 Serial.println(" hPa");

 Serial.print("Humidity = ");

 Serial.print(bme.humidity);

 Serial.println(" %");

 Serial.print("Gas = ");

 Serial.print(bme.gas_resistance / 1000.0);

 Serial.println(" KOhms");

 Serial.print("Approx. Altitude = ");

 Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 Serial.println(" m");

 Serial.println();

 delay(2000);

}

Depending on whether you are using I2C or SPI, change the pin names and
comment or uncomment the following lines.

#define BME_SCK 13
#define BME_MISO 12
#define BME_MOSI 11
#define BME_CS 10

Adafruit_BME680 bme; // I2C
//Adafruit_BME680 bme(BME_CS); // hardware SPI
//Adafruit_BME680 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK);

Once uploaded, open up the serial console at 9600 baud speed to see data being
printed out

Temperature is calculated in degrees C, you can convert this to F by using the
classic F = C * 9/5 + 32 equation.

Pressure is returned in the SI units of Pascals. 100 Pascals = 1 hPa = 1 millibar.
Often times barometric pressure is reported in millibar or inches-mercury. For
future reference 1 pascal =0.000295333727 inches of mercury, or 1 inch Hg =
3386.39 Pascal. So if you take the pascal value of say 100734 and divide by 3386.39
you'll get 29.72 inches-Hg.

Humidity is returned in Relative Humidity %

Gas is returned as a resistance value in ohms. This value takes up to 30 minutes to
stabilize! Once it stabilizes, you can use that as your baseline reading. Higher
concentrations of VOC will make the resistance lower.

You can also calculate Altitude. However, you can only really do a good accurate
job of calculating altitude if you know the hPa pressure at sea level for your
location and day! The sensor is quite precise but if you do not have the data
updated for the current day then it can be difficult to get more accurate than 10
meters.

https://learn.adafruit.com/assets/48080

