

SmartElex Environmental Sensor - BME688
Important Note: In order to avoid contamination of its gas scanning
capabilities, DO NOT touch the metallic casing of the BME688 sensor.

The BME688 is a breakout for the 4-in-1 BME680 gas sensor from Bosch. The
BME680 combines a gas sensor with temperature, humidity and barometric
pressure sensing for a complete environmental sensor in a single package. The
gas sensor on the BME680 can detect a wide variety of volatile organic
compounds (or VOC for short) to monitor indoor air quality. Combine that with
precise temperature, humidity and barometric pressure and the BME680 can
work as a completely standalone environmental sensor all in a 1"x1" breakout!
The BME680 communicates over either I2C or SPI.

Hardware Overview

The heart of these breakout boards, Bosch's BME680 Gas Sensor, integrates
four sensors (gas, pressure, temperature and humidity) into a tiny package. The
BME68x measures just 3mm x 3mm x 0.93 mm and was specifically designed

for applications that depend on a small footprint and low power consumption.
This makes the BME68x a great choice for remote or mobile environmental
sensing applications. We will highlight some of the unique aspects of the
BME68x in this section but for a full overview of the sensor package, check out
the BME688 datasheet

BME688 Note: The BME688 is a drop in replacement for the BME680; with the
added gas scanning functionality and support for AI algorithms. The parameters
in highlighted in yellow, only apply to the BME688 sensor.

How does the gas scanner work?
The gas sensor takes measurements with different sensitivities during one gas
scan. In doing so, it can generate a profile (or fingerprint) for different gas
mixtures. This can be modified and optimized with BME AI-Studio.

Characteristic Description

Operating Voltage • VDD: 1.71V to 3.6V
• VDDIO: 1.2 to 3.6V

Operational Modes Sleep (Default) and Forced (low power; single measurement)

Parallel (Gas sensor heater operates in parallel to TPH measurement)

Interface I²C and SPI

I²C Address

BME688: 0x76 (Default) or 0x77

Average current consumption 2.1 µA at 1 Hz humidity and temperature

3.1 µA at 1 Hz pressure and temperature

3.7 µA at 1 Hz humidity, pressure and temperature

90 µA at ULP mode for p/h/T & air quality

0.9 mA at LP mode for p/h/T & air quality

3.9 mA in standard gas scan mode

Humidity Parameters Range: 10 to 90 %RH

Absolute Accuracy: ±3 %RH (from 20 - 80 %RH)

Resolution: 0.008 %RH

Pressure Parameters Range: 300 to 1100 hPa (30,000 - 110,000 Pa or approx. 4.35 - 15.95 PSI)

Absolute Accuracy: ±0.6 hPa

Resolution: 0.18 Pa

Temperature Parameters Range: 0°C to 65°C (32°F to 149°F)

Absolute Accuracy: ±(0.5 - 1.0)°C

Resolution: 0.01°C

Gas Sensor Parameters F1 score for H₂S scanning: 0.92

Standard scan speed: 10.8 s / scan

Sensor-to-sensor deviation: +/- 15% +/- 15

Output data processing:

• Index for Air Quality (IAQ)
• bVOC-& CO₂-equivalents (ppm)
• Gas scan result (%)
• More listed in the BSEC outputs table:

o Table 20 in the BME688 datasheet

Power

The BME68x accepts a supply voltage between 1.71 to 3.6V. Power can be
supplied to the board either through one of the connectors or the
dedicated 3.3V and GND pins broken out on either side of the board.

I2C Interface

The Environmental Sensor - BME68x communicates over I2C by default. We
have routed the BME68x's I2C pins to two connectors as well as broken them
out to 0.1"-spaced the header pins.

Note: The default I2C address between the BME688 board is: 0x76

Serial Peripheral Interface (SPI)

If you would prefer to communicate with your BME68x via SPI, we have broken
those pins out as well to standard 0.1"-spade header pins. Communicating over
SPI requires more connections than I2C but is more versatile and can be faster.
It is particularly helpful if you need to use more than two BME68x's in your circuit
or if you have other devices using the same I2C addresses.

BME688 SPI Jumpers: In order to communicate with the BME688 board over

SPI, users will need to cut the CSB and ADR (leave floating) jumpers. *See

the CSB Jumper section, below, for more information.

Solder Jumpers

The Environmental Sensor - BME688 has four solder jumpers which can be
modified to alter the functionality of the sensor.

I2C Pull-Up Jumper

On the BME680 board, the SDA/SDI and SCL/SCK pins are pulled to VDDIO
(3.3V) through a pair of 4.7kΩ (2.2kΩ on the BME688) resistors. The jumper is
normally closed so to disable the pull-up resistors, simply sever the traces
between the three pads using a knife.

Power LED Jumper

This jumper connects the power LED to 3.3V via a 1K Ohm resistor. This
jumper is normally closed so to disable the power LED, sever the trace between
the two pads. This is particularly helpful for reducing the total current draw of
your breakout for low-power applications.

I2C Address Jumper

This jumper sets the 7-Bit unshifted I2C address of the BME680 and is open by
default. The default address is 0x77 and can be adjusted to 0x76 by closing this
jumper.

This jumper sets the 7-Bit unshifted I2C address of the BME688 and sets the
default address to 0x76 and can be adjusted to 0x77 by cutting and soldering

the jumper over to the 0x77 pad.

CSB Jumper

This jumper only applies to the BME688 board. The CSB pin is pulled up to

VDDIO in order to configure the board for I2C communication by default. In order

to communicate with the sensor over SPI, the CSB jumper must be cut along

with the ADR jumper (leave floating). Once the CSB pin has been pulled low

during SPI communication, the sensor will communicate over SPI until there is a
power reset.

Wiring

Arduino BME688
SCL(A5) SCL
SDA(A4) SDA

 3.3v 3V3
GND GND

If you would prefer to communicate with the BME680 via SPI, you will need to
connect to the SPI pins broken out on this board and route them to the
respective pins for SPI communication on your development board (CIPO,
COPI, SCK and CS). Also note that this breakout defaults to I2C mode so your
code will need to toggle the CS pin LOW once on power up to enable SPI mode.
The BME680 will remain in SPI mode until the next power cycle. The SPI
examples further on in this guide do that automatically so it's only necessary to
note for writing your own code.

Note: On the BME688 board, users will need to cut the ADR and CSB jumpers to

enable SPI communication. (*See the Hardware Overview section for more

information.)

Soldering to the pins is the best option for a secure connection but you can also
create temporary connections to those pins for prototyping using something like

3V3

GND

SDA
A SCL

these IC Hooks. If you are not familiar with through-hole soldering, take a look at
this tutorial:

BME680 Arduino Library

For the scope of tutorial, we are going to use the BME680 Arduino Library
created by Zanshin_BME680. You can download it with the Arduino Library
Manager by searching 'BME688' and selecting the one authored by SV-
Zanshin.

Once you have the library installed you can move on to uploading the examples
and gathering environmental data.

Example Code

#include "Zanshin_BME680.h" // Include the BME680 Sensor library

/**

** Declare all program constants **

********************/

const uint32_t SERIAL_SPEED = 115200; ///< Set the baud rate for Serial I/O

/**

** Declare global variables and instantiate classes **

********************/

BME680_Class BME680; ///< Create an instance of the BME680 class

float altitude(const int32_t press, const float seaLevel = 1013.25); ///< Forward function declaration with default

value for sea level

float altitude(const int32_t press, const float seaLevel)

{

 /*!

 * @brief This converts a pressure measurement into a height in meters

 * @details The corrected sea-level pressure can be passed into the function if it is know, otherwise the standard

 * atmospheric pressure of 1013.25hPa is used (see https://en.wikipedia.org/wiki/Atmospheric_pressure)

 * @param[in] press Pressure reading from BME680

 * @param[in] seaLevel Sea-Level pressure in millibars

 * @return floating point altitude in meters.

 */

 static float Altitude;

 Altitude = 44330.0*(1.0-pow(((float)press/100.0)/seaLevel,0.1903)); // Convert into altitude in meters

 return(Altitude);

} // of method altitude()

void setup()

{

 /*!

 @brief Arduino method called once at startup to initialize the system

 @details This is an Arduino IDE method which is called first upon boot or restart. It is only called one time

 and then control goes to the main "loop()" method, from which control never returns

 @return void

 */

 Serial.begin(SERIAL_SPEED); // Start serial port at Baud rate

 #ifdef __AVR_ATmega32U4__ // If this is a 32U4 processor, then wait 3 seconds to initialize USB port

 delay(3000);

 #endif

 Serial.print(F("Starting I2CDemo example program for BME680\n"));

 Serial.print(F("- Initializing BME680 sensor\n"));

 while (!BME680.begin(I2C_STANDARD_MODE)) // Start BME680 using I2C protocol

 {

 Serial.print(F("- Unable to find BME680. Trying again in 5 seconds.\n"));

 delay(5000);

 } // of loop until device is located

 Serial.print(F("- Setting 16x oversampling for all sensors\n"));

 BME680.setOversampling(TemperatureSensor,Oversample16); // Use enumerated type values

 BME680.setOversampling(HumiditySensor, Oversample16); // Use enumerated type values

 BME680.setOversampling(PressureSensor, Oversample16); // Use enumerated type values

 Serial.print(F("- Setting IIR filter to a value of 4 samples\n"));

 BME680.setIIRFilter(IIR4); // Use enumerated type values

 Serial.print(F("- Setting gas measurement to 320\xC2\xB0\x43 for 150ms\n")); // "�C" symbols

 BME680.setGas(320,150); // 320�c for 150 milliseconds

} // of method setup()

void loop()

{

 /*!

 @brief Arduino method for the main program loop

 @details This is the main program for the Arduino IDE, it is an infinite loop and keeps on repeating.

 The "sprintf()" function is to pretty-print the values, since floating point is not supported on the

 Arduino, split the values into those before and those after the decimal point.

 @return void

 */

 static int32_t temp, humidity, pressure, gas; // Variable to store readings

 static char buf[16]; // Text buffer for sprintf

 static float alt; // temp variable for altitude

 static uint16_t loopCounter = 0; // Display iterations

 if (loopCounter % 25 == 0) // Display header every 25 loops

 { //

 Serial.print(F("\nLoop Temp\xC2\xB0\x43 Humid% Press hPa Alt m Air m")); // Show header plus unicode

"�C"

 Serial.print(F("\xE2\x84\xA6\n==== ====== ====== ========= ======= ======\n")); // and "?" symbols

 } // if-then time to show headers //

 BME680.getSensorData(temp,humidity,pressure,gas); // Get the most recent readings

 sprintf(buf, "%4d %3d.%02d", ++loopCounter%9999, // Clamp iterations to 9999,

 (int8_t)(temp/100),(uint8_t)(temp%100)); // Temperature in decidegrees

 Serial.print(buf); //

 sprintf(buf, "%3d.%03d", (int8_t)(humidity/1000),(uint16_t)(humidity%1000)); // Humidity in milli-percent

 Serial.print(buf); //

 sprintf(buf, "%7d.%02d", (int16_t)(pressure/100),(uint8_t)(pressure%100)); // Pressure in Pascals

 Serial.print(buf); //

 alt = altitude(pressure); // temp variable for altitude

 sprintf(buf, "%5d.%02d", (int16_t)(alt),((uint8_t)(alt*100)%100)); // Altitude in meters

 Serial.print(buf); //

 sprintf(buf, "%4d.%02d\n", (int16_t)(gas/100),(uint8_t)(gas%100)); // Resistance in milliohms

 Serial.print(buf); //

 delay(10000); // Wait 10s before repeating

} // of method loop()

