

SmartElex HTU21D-F Temperature & Humidity Sensor Breakout Board

This I2C digital humidity sensor is an accurate and intelligent alternative to the much simpler Humidity and Temperature Sensor - SHT15. It has a typical accuracy of $\pm 2\%$ with an operating range that's optimized from 5% to 95% RH. Operation outside this range is still possible - just the accuracy might drop a bit. The temperature output has an accuracy of $\pm 1^{\circ}$ C from -30~90°C.

We created a breakout board that includes the Filtered version (the white bit of plastic which is a PTFE filter to keep the sensor clean), a 3.3V regulator and I2C level shifting circuitry. This lets you use it safely with any kind of microcontroller with 3.3V-5V power or logic.

Pinouts

The HTU21D-F is a I2C sensor. That means it uses the two I2C data/clock wires available on most microcontrollers, and can share those pins with other sensors as long as they don't have an address collision. For future reference, the I2C address is **0x40** and you *can't* change it!

Power Pins:

- Vin this is the power pin. Since the chip uses 3 VDC, we have included a voltage regulator on board that will take 3-5VDC and safely convert it down. To power the board, give it the same power as the logic level of your microcontroller e.g. for a 5V micro like Arduino, use 5V
- **3Vo** this is the 3.3V output from the voltage regulator, you can grab up to 100mA from this
- **GND** common ground for power and logic

I2C Logic pins:

- SCL I2C clock pin, connect to your microcontrollers I2C clock line.
- **SDA** I2C data pin, connect to your microcontrollers I2C data line.

Wiring

You can easily wire this breakout to any microcontroller; we'll be using an Arduino. For another kind of microcontroller, just make sure it has I2C, then port the code.

Arduino	HTU21D-F
SCL(A5)	SCL

SDA(A4)	SDA
5v OR 3.3v	VIN
GND	GND

- Connect **Vin** to the power supply, 3-5V is fine. Use the same voltage that the microcontroller logic is based off. For most Arduinos, that is 5V
- Connect **GND** to common power/data ground
- Connect the SCL pin to the I2C clock SCL pin on your Arduino. On an UNO & '328 based Arduino, this is also known as A5, on a Mega it is also known as digital 21 and on a Leonardo/Micro, digital 3
- Connect the SDA pin to the I2C data SDA pin on your Arduino. On an UNO & '328 based Arduino, this is also known as A4, on a Mega it is also known as digital 20 and on a Leonardo/Micro, digital 2

The HTU21D-F has a default I2C address of **0x40** and cannot be changed!

To begin reading sensor data, you will need to download the **Adafruit HTU21DF** library from the Arduino library manager. Open up the Arduino library manager, Search for the **Adafruit HTU21DF** library and install it.

Load Example

Open up File->Examples->Adafruit_HTU21DF->HTU21DFtest and upload to your Arduino wired up to the sensor

Example Code

#include <Wire.h>

#include "Adafruit_HTU21DF.h"

// Connect Vin to 3-5VDC

// Connect GND to ground

// Connect SCL to I2C clock pin (A5 on UNO)

// Connect SDA to I2C data pin (A4 on UNO)

Adafruit_HTU21DF htu = Adafruit_HTU21DF();

```
void setup() {
 Serial.begin(9600);
 Serial.println("HTU21D-F test");
 if (!htu.begin()) {
  Serial.println("Couldn't find sensor!");
  while (1);
 }
}
void loop() {
  float temp = htu.readTemperature();
  float rel_hum = htu.readHumidity();
  Serial.print("Temp: "); Serial.print(temp); Serial.print(" C");
  Serial.print("\t\t");
  Serial.print("Humidity: "); Serial.print(rel_hum); Serial.println(" \%");
  delay(500);
```

}

Now open up the serial terminal window at 9600 speed to begin the test.

💿 coi	M70			x
			Send	d
HTU21	D-F test			
Temp:	25.54	Hum:	49.73	
Temp:	25.53	Hum:	48.98	
Temp:	26.39	Hum:	58.70	
Temp:	26.84	Hum:	66.98	
Temp:	26.40	Hum:	70.94	Ξ
Temp:	26.34	Hum:	73.69	
Temp:	26.81	Hum:	75.20	
Temp:	26.79	Hum:	75.00	
Temp:	26.61	Hum:	72.85	
Temp:	26.53	Hum:	71.65	
Temp:	26.43	Hum:	69.76	
Temp:	26.39	Hum:	68.20	
Temp:	26.36	Hum:	66.89	
Temp:	26.33	Hum:	65.59	-
T	26.20		<u></u>	
Aut	toscroll	No line ending		•

Library Reference

The library we have is simple and easy to use You can create the **Adafruit_HTU21DF** object with:

```
Adafruit_HTU21DF htu = Adafruit_HTU21DF ()
```

There are no pins to set since you must use the I2C bus! Then initialize the sensor with:

```
htu.begin()
```

this function returns **True** if the sensor was found and responded correctly and **False** if it was not found Once initialized, you can query the temperature in °C with

```
htu.readTemperature()
```

Which will return floating point (decimal + fractional) temperature. You can convert to Fahrenheit by multiplying by 1.8 and adding 32 Reading the humidity is equally simple. Call

```
htu.readHumidity()
```

to read the humidity also as a floating-point value between 0 and 100 (this reads % humidity)