

SmartElex 9DoF IMU Breakout - ISM330DHCX,
MMC5983MA

The MMC5983MA combines the high-performance ISM330DHCX 3D digital
accelerometer and gyroscope from STMicroelectronics with the highly sensitive
triple-axis magnetometer by MEMSIC to give you an ultra powerful, easy to use
breakout board.

With a full scale acceleration range of ±2/±4/±8/±16 g and a wide angular rate range
of ±125/±250/±500/±1000/±2000/±4000 dps, as well as an unmatched set of
embedded features (Machine Learning Core, programmable FSM, FIFO, sensor hub,
event decoding and interrupts), the ISM330DHCX delivers high performance at very
low power. Add to that the MMC5983MA, which can measure magnetic fields
within the full scale range of ±8 Gauss (G), with 0.25mG/0.0625mG per LSB
resolution at 16bits/18bits operation mode and 0.4 mG total RMS noise level and
you've got 9 Degrees of Freedom on one tiny little breakout board.

Hardware Overview

ISM330DHCX 6DoF

The ISM330DHCX is a small, system-in-package from STMicroelectronics featuring a
high-performance 3D digital accelerometer and 3D digital gyroscope capable of wide
bandwidth, ultra-low noise and a selectable full-scale range of ±2/±4/±8/±16 g. The 3D

gyroscope has an angular rate range of ±125/±250/±500/±1000/±2000/±4000 dps and
offers superior stability over temperature and time along with ultra-low noise.

The ISM330DHCX as implemented in the 9DoF can run in two different modes:

Mode 1

This is the default "peripheral only" mode. This mode allows you to use either I2C or
SPI. By default, I2C is enabled with an address of 0x6B. By manipulating the associated
jumper, you can change the I2C address to 0x6A (cut the power side and close the
ground side) or switch to SPI mode (both jumpers open).

Mode 2

This mode enables a secondary I2C port that the 6DoF controls; up to 4 external sensors
can be connected to the I2C controller interface of the device. External sensors
communicate via the SCX and SDX (PICOX) lines - the SCX jumper will need to be
opened.

MMC5983MA

The MMC5983MA is an AEC-Q100 qualified, fully integrated 3-axis magnetic sensor
with on-chip signal processing and integrated I2C/SPI bus. It has superior dynamic range
and accuracy with ±8G FSR, 18bit operation, 0.4mG total RMS noise, and can enable
heading accuracy of 0.5º. More information can be found in the datasheet.

 Warning! It should be noted that the Z axis for the ISM330DHCX and the

MMC5983MA are calibrated from opposite directions. The ISM330DHCX Z axis

functions as looking through from top to bottom. The MMC5983MA Z axis functions

as looking from the bottom of the board through to the top. This is denoted by the

"MAG -Z" labeled dot on the underside of the board.

Connectors

Ther connector on either side of the 9DoF board - ISM330DHCX, MMC5983MA

breakout to provide power and I2C connectivity simultaneously. The default I2C address

for the ISM330DHCX is 0x6B, and the I2C address for the MMC5983MA Magnetometer

is 0x30.

Power

Ideally, power will be supplied via the connectors, but we've also broken out plated
through hole pins to supply 3.3V and Ground, should you prefer. Make sure to pay
attention to logic levels - supply voltage to this board should range from 1.71 V to 3.6
V.

I2C

For flexibility, we've broken out the I2C functionality as seen below. Primary I2C pins are
broken out to SDA and SCL. Secondary I2C pins are broken out to SDX and SCX. These
pins are used solely for Mode 2- Sensor Hub Mode - where the ISM330DHCX reads
other sensors. You must cut the SDX and SCX jumpers on the back of the board in order
to use this mode.

SPI

Like the I2C functionality, we've also broken out the SPI functionality to PTH pins.

SPI Pins for the ISM330DHCX are broken out to SDA, POCI, and the ACS (Accelerometer
Chip Select).SPI pins for the MMC5983MA are broken out to SDA, POCI, and the MCS
(Magnetometer Chip Select).

I2C Address/SPI

By default, I2C is enabled with an address of 0x6B. By manipulating this jumper, you can
change the I2C address to 0x6A (cut the power side and close the ground side) or switch
to SPI mode (both jumpers open).

SCX/SDX

The SCX and SDX pins are specific to Mode 2 of the ISM330DHCX and are used for
peripheral communication. By default they are closed - to use Mode 2 you will need to
cut both traces to open the jumper.

Wiring

Connecting the MMC5983MA to Arduino:

Arduino MMC5983MA & ISM330DHCX
SCL(A5) SCL

SDA(A4) SDA

3.3v 3V3
GND GND

Example Code

1.MMC5983MA-Magnetometer

#include <Wire.h>

#include <SparkFun_MMC5983MA_Arduino_Library.h> //Click here to get the library:
http://librarymanager/All#SparkFun_MMC5983MA

SFE_MMC5983MA myMag;

3V3

GND

SDA
A SCL

void setup()

{

 Serial.begin(115200);

 Serial.println("MMC5983MA Example");

 Wire.begin();

 if (myMag.begin() == false)

 {

 Serial.println("MMC5983MA did not respond - check your wiring. Freezing.");

 while (true) ;

 }

 myMag.softReset();

 Serial.println("MMC5983MA connected");

 int celsius = myMag.getTemperature();

 float fahrenheit = (celsius * 9.0f / 5.0f) + 32.0f;

 Serial.print("Die temperature: ");

 Serial.print(celsius);

 Serial.print("°C or ");

 Serial.print(fahrenheit, 0);

 Serial.println("°F.");

}

void loop()

{

 uint32_t currentX = 0;

 uint32_t currentY = 0;

 uint32_t currentZ = 0;

 double scaledX = 0;

 double scaledY = 0;

 double scaledZ = 0;

 // This reads the X, Y and Z channels consecutively

 // (Useful if you have one or more channels disabled)

 currentX = myMag.getMeasurementX();

 currentY = myMag.getMeasurementY();

 currentZ = myMag.getMeasurementZ();

 // Or, we could read all three simultaneously

 //myMag.getMeasurementXYZ(¤tX, ¤tY, ¤tZ);

 Serial.print("X axis raw value: ");

 Serial.print(currentX);

 Serial.print("\tY axis raw value: ");

 Serial.print(currentY);

 Serial.print("\tZ axis raw value: ");

 Serial.println(currentZ);

 // The magnetic field values are 18-bit unsigned. The _approximate_ zero (mid) point is 2^17 (131072).

 // Here we scale each field to +/- 1.0 to make it easier to convert to Gauss.

 //

 // Please note: to properly correct and calibrate the X, Y and Z channels, you need to determine true

 // offsets (zero points) and scale factors (gains) for all three channels. Futher details can be found at:

 // https://thecavepearlproject.org/2015/05/22/calibrating-any-compass-or-accelerometer-for-arduino/

 scaledX = (double)currentX - 131072.0;

 scaledX /= 131072.0;

 scaledY = (double)currentY - 131072.0;

 scaledY /= 131072.0;

 scaledZ = (double)currentZ - 131072.0;

 scaledZ /= 131072.0;

 // The magnetometer full scale is +/- 8 Gauss

 // Multiply the scaled values by 8 to convert to Gauss

 Serial.print("X axis field (Gauss): ");

 Serial.print(scaledX * 8, 5); // Print with 5 decimal places

 Serial.print("\tY axis field (Gauss): ");

 Serial.print(scaledY * 8, 5);

 Serial.print("\tZ axis field (Gauss): ");

 Serial.println(scaledZ * 8, 5);

 Serial.println();

 delay(100);

}

2.ISM330DHCX 6DoF IMU

#include <Wire.h>

#include "SparkFun_ISM330DHCX.h"

SparkFun_ISM330DHCX myISM;

// Structs for X,Y,Z data

sfe_ism_data_t accelData;

sfe_ism_data_t gyroData;

void setup(){

 Wire.begin();

 Serial.begin(115200);

 if(!myISM.begin()){

 Serial.println("Did not begin.");

 while(1); }

 // Reset the device to default settings. This if helpful is you're doing multiple

 // uploads testing different settings.

 myISM.deviceReset();

 // Wait for it to finish reseting

 while(!myISM.getDeviceReset()){

 delay(1);

 }

 Serial.println("Reset.");

 Serial.println("Applying settings.");

 delay(100);

 myISM.setDeviceConfig();

 myISM.setBlockDataUpdate();

 // Set the output data rate and precision of the accelerometer

 myISM.setAccelDataRate(ISM_XL_ODR_104Hz);

 myISM.setAccelFullScale(ISM_4g);

 // Set the output data rate and precision of the gyroscope

 myISM.setGyroDataRate(ISM_GY_ODR_104Hz);

 myISM.setGyroFullScale(ISM_500dps);

 // Turn on the accelerometer's filter and apply settings.

 myISM.setAccelFilterLP2();

 myISM.setAccelSlopeFilter(ISM_LP_ODR_DIV_100);

 // Turn on the gyroscope's filter and apply settings.

 myISM.setGyroFilterLP1();

 myISM.setGyroLP1Bandwidth(ISM_MEDIUM);

}

void loop(){

 // Check if both gyroscope and accelerometer data is available.

 if(myISM.checkStatus()){

 myISM.getAccel(&accelData);

 myISM.getGyro(&gyroData);

 Serial.print("Accelerometer: ");

 Serial.print("X: ");

 Serial.print(accelData.xData);

 Serial.print(" ");

 Serial.print("Y: ");

 Serial.print(accelData.yData);

 Serial.print(" ");

 Serial.print("Z: ");

 Serial.print(accelData.zData);

 Serial.println(" ");

 Serial.print("Gyroscope: ");

 Serial.print("X: ");

 Serial.print(gyroData.xData);

 Serial.print(" ");

 Serial.print("Y: ");

 Serial.print(gyroData.yData);

 Serial.print(" ");

 Serial.print("Z: ");

 Serial.print(gyroData.zData);

 Serial.println(" ");

 }

 delay(100);

}

