

SmartElex Digital Temperature Sensor - TMP102

The Digital Temperature Sensor - TMP102 we've made this just about as easy as it gets.
Based off of the original Digital Temperature Sensor Breakout - TMP102, we've added

connectors to bring this board into our plug-and-play Ecosystem and added an address
jumper instead of breaking out the address pin.

Hardware Overview

Have you heard the phrase "Good things come in small packages"? Well, here's is a
prime example! This board centers around Texas Instruments' TMP102 Low-Power
Digital Temperature Sensor. This tiny little chip measures 1.6-mm × 1.6-mm and packs
quite a nice punch. Here are some of the highlights, but feel free to check out
the Datasheet for more information.

Highlights:

• Uses the I2C interface
• 12-bit, 0.0625°C resolution
• Typical temperature accuracy of ±0.5°C
• Supports up to four TMP102 sensors on the I2C bus at a time

https://www.sparkfun.com/qwiic

Power

Ideally, power will be supplied via the connectors on either side of the board.
Alternatively, power can be supplied through the header along the bottom side of the

board labeled 3V3 and GND. The input voltage range should be between 1.4-3.6V.

 Note: There is no onboard voltage regulation on this boards. If you choose to

provide power via the plated through holes, ensure that your voltage does not exceed

the 4V absolute maximum.

The I2C address of the board is 0x48 by default , but has 3 other addresses the board
can be configured to use.

I2C Pins
The I2C pins break out the functionality of the connectors. Depending on your

application, you can connect to these pins via the plated through holes for SDA and SCL.

Alert Pin

The alert pin is an over temperature alert, which has an open-drain and is pulled up
through a 10kΩ resistor. The alert can also be read over I2C as shown in the example in
the Software Setup and Programming section.

ADDR Jumpers

The default I2C address of the board is 0x48. To change the address, cut the jumper
connecting the two pads closest to the 0x48 label. Soldering one of the center pads to
one of the outer most pads will change the boards address to the matching label. The
TMP102's address is determined by connecting the address pin directly to one of the
following:

ADDR Address

GND 0x48

3V3 0x49

SDA 0x4A

SCL 0x4B

LED Jumpers

Cutting this jumper will disable the Power LED on the front of the board.

Wring

Arduino TMP102
SCL(A5) SCL

SDA(A4) SDA
5v OR 3.3v VIN

GND GND

Software Setup and Programming
You can obtain this library through the Arduino Library Manager by searching
for TMP102.

Once the library is installed, open Arduino, and expand the examples menu. You should
see the TMP102 example.

SDA

SCL

3V3

GND

TMP102 Library Overview

Main functions

These are functions used to read settings and temperatures from the sensor.

• bool begin(uint8_t deviceAddress, TwoWire &wirePort) - Takes the device

address and I2C bus as optional inputs. If left blank, this function uses the default
address 0x48, and uses the Wire bus.

• float readTempC(void) - Returns the current temperature in Celsius.

• float readTempF(void) - Returns the current temperature in Fahrenheit.

• float readLowTempC(void) - Reads T_LOW register in Celsius.

• float readHighTempC(void) - Reads T_HIGH register in Celsius.

• float readLowTempF(void) - Reads T_LOW register in Fahrenheit.

• float readHighTempC(void) - Reads T_HIGH register in Fahrenheit.

• void sleep(void) - Put TMP102 in low power mode (<0.5 uA).

• void wakeup(void) - Return to normal power mode (~10 uA). When the sensor

powers up, it is automatically running in normal power mode, and only needs to

be used after * sleep() is used.

• bool alert(void) - Returns the state of the Alert register. The state of the

register is the same as the alert pin.

• void setLowTempC(float temperature) - Sets T_LOW (in Celsius) alert threshold.

• void setHighTempC(float temperature) - Sets T_HIGH (in Celsius) alert

threshold.

• void setLowTempF(float temperature) - Sets T_LOW (in Fahrenheit) alert

threshold.

• void setHighTempF(float temperature) - Sets T_HIGH (in Fahrenheit) alert

threshold.

• void setConversionRate(uint8_t rate) - Sets the temperature reading conversion

rate. 0: 0.25Hz, 1: 1Hz, 2: 4Hz (default), 3: 8Hz.

• void setExtendedMode(bool mode) - Enable or disable extended mode. 0:

disabled (-55C to +128C), 1: enabled (-55C to +150C).

• void setAlertPolarity(bool polarity) - Sets the polarity of the alert. 0: active

LOW, 1: active HIGH

• void setFault(uint8_t faultSetting) - Sets the number of consecutive faults

before triggering alert. 0: 1 fault, 1: 2 faults, 2: 4 faults, 3: 6 faults.

• void setAlertMode(bool mode) - Sets the type of alert. 0: Comparator Mode

(Active from when temperature > T_HIGH until temperature < T_LOW), 1:

Thermostat mode (Active from when temperature > T_HIGH until any read
operation occurs.

Example Code

Once the library is installed, open the example code to get started! Make sure to select
your board and COM port before hitting upload to begin experimenting with the
temperature sensor.

#include <Wire.h> // Used to establied serial communication on the I2C bus

#include <SparkFunTMP102.h> // Used to send and recieve specific information from
our sensor

// Connections

// VCC = 3.3V

// GND = GND

// SDA = A4

// SCL = A5

const int ALERT_PIN = A3;

TMP102 sensor0;

// Sensor address can be changed with an external jumper to:

// ADD0 - Address

// VCC - 0x49

// SDA - 0x4A

// SCL - 0x4B

void setup() {

 Serial.begin(115200);

 Wire.begin(); //Join I2C Bus

 pinMode(ALERT_PIN,INPUT); // Declare alertPin as an input

 /* The TMP102 uses the default settings with the address 0x48 using Wire.

 Optionally, if the address jumpers are modified, or using a different I2C bus,

 these parameters can be changed here. E.g. sensor0.begin(0x49,Wire1)

 It will return true on success or false on failure to communicate. */

 if(!sensor0.begin())

 {

 Serial.println("Cannot connect to TMP102.");

 Serial.println("Is the board connected? Is the device ID correct?");

 while(1);

 }

 Serial.println("Connected to TMP102!");

 delay(100);

 // Initialize sensor0 settings

 // These settings are saved in the sensor, even if it loses power

 // set the number of consecutive faults before triggering alarm.

 // 0-3: 0:1 fault, 1:2 faults, 2:4 faults, 3:6 faults.

 sensor0.setFault(0); // Trigger alarm immediately

 // set the polarity of the Alarm. (0:Active LOW, 1:Active HIGH).

 sensor0.setAlertPolarity(1); // Active HIGH

 // set the sensor in Comparator Mode (0) or Interrupt Mode (1).

 sensor0.setAlertMode(0); // Comparator Mode.

 // set the Conversion Rate (how quickly the sensor gets a new reading)

 //0-3: 0:0.25Hz, 1:1Hz, 2:4Hz, 3:8Hz

 sensor0.setConversionRate(2);

 //set Extended Mode.

 //0:12-bit Temperature(-55C to +128C) 1:13-bit Temperature(-55C to +150C)

 sensor0.setExtendedMode(0);

 //set T_HIGH, the upper limit to trigger the alert on

 sensor0.setHighTempF(85.0); // set T_HIGH in F

 //sensor0.setHighTempC(29.4); // set T_HIGH in C

 //set T_LOW, the lower limit to shut turn off the alert

 sensor0.setLowTempF(84.0); // set T_LOW in F

 //sensor0.setLowTempC(26.67); // set T_LOW in C

}

void loop()

{

 float temperature;

 boolean alertPinState, alertRegisterState;

 // Turn sensor on to start temperature measurement.

 // Current consumtion typically ~10uA.

 sensor0.wakeup();

 // read temperature data

 temperature = sensor0.readTempF();

 //temperature = sensor0.readTempC();

 // Check for Alert

 alertPinState = digitalRead(ALERT_PIN); // read the Alert from pin

 alertRegisterState = sensor0.alert(); // read the Alert from register

 // Place sensor in sleep mode to save power.

 // Current consumtion typically <0.5uA.

 sensor0.sleep();

 // Print temperature and alarm state

 Serial.print("Temperature: ");

 Serial.print(temperature);

 Serial.print("\tAlert Pin: ");

 Serial.print(alertPinState);

 Serial.print("\tAlert Register: ");

 Serial.println(alertRegisterState);

 delay(1000); // Wait 1000ms

}

