

SmartElex Ambient Light Sensor - VEML6030

The Ambient Light Sensor (VEML6030) is an I²C enabled ambient light sensor with high
sensitivity and high accuracy. It reads ambient light in Lux and boasts a number of nice
features including: the ability to set high and low thresholds for an optional interrupt,
power saving features that enable single digit micro-amp current draw, and a readable
range from zero to 120,000 Lux. We've also written an Arduino library that gives full
access to all features and includes example code demonstrating all its' abilities. Follow
along and let's learn about all its features and how to use them!

Hardware Overview

Power

You can provide 3.3V through the connector on the board or through the 3V3 labeled

pin on the through hole header. When you correctly power the board, the on-board
red power LED will turn on.

LED

There is one red LED on the product that will turn on when power is supplied to the
board. You can disconnect this LED by cutting the jumper on the underside of the

product labeled LED, see Jumpers below.

Connector or I2C Pins

There are two connectors on the board to easily connect to the sensor via I2C. Another
option is to solder directly to the I2C plated through holes on the side of the board.

Interrupt Pin

A nice feature on the Ambient Light sensor is its ability to set
both LOW and HIGH thresholds that triggers an interrupt on the product. For example,
we can know when the light in a room falls below a certain amount and conversely
when the light comes back on! You don't have to settle for just the hardware interrupt
though. We also have a software solution, check out the interrupt example code below.

Jumpers

There are three jumpers on the underside of this board. Starting in the lower left is a

triple jumper labeled I2C that connects pull-up resistors to the I²C data lines. If you're

daisy chaining many I²C devices together than you may need to consider cutting these
traces.

To the right of that is the address jumper labeled ADR that allows you to select the

Ambient Light Sensor's other I²C address: 0x10. By default your Ambient Light Sensor is
shipped with the I²C address 0x48.

Finally the jumper in the upper right is the LED jumper which can be cut to disconnect

the on board power LED.

Gain and Integration Time Settings

What does gain and integration time mean? You can think of gain as an electronic
mechanism to amplify a weak signal. If you're in a dark room with very little light, the
sensor needs a way to amplify the weak light source to get accurate lux calculations
and the gain is what give is it's oomph. Likewise, Integration time is the amount of
time the sensitive photo diodes within the sensor absorb light before beginning its' Lux
calculation. Both of these together are necessary for sensing in a dark room, but what if
it was really bright outside?! Now there's so much light in the envinronment that you
actually want to scale down the electronic's response to that saturation so you need
a lower gain. And since there's so much light, the photo diodes don't need to be

exposed long to get what they need to make the calculations, so a lower
integration time is also needed.

The Ambient Light Sensor can detect ranges of light in Lux from zero to 120,796! That's
a gigantic range from dark to direct sun in the middle of the day. To accomplish this
you have to set the Gain and Integration Time settings. This is trivial with the Arduino
Library we've written and we'll walk you through it below in Example1 Ambient Light
Basics. With each setting gives you a range of light that you can read. Check out the
table below to see what's capable at each possible setting. Notice that slower
integration and higher gain gives you a smallest range of (0->236) but the highest
resolution (0.0036 lux/bit).

The datasheet recommends that you use a setting of 1/4 (.25) or 1/8 (.125) unless the
Ambient Light Sensor is going to sit behind dark glass. This will help to prevent over
saturation of the photodiodes within the sensor.

Maximum Light Detection Range: Lux

Integration Time (milliseconds) GAIN 2 GAIN 1 GAIN 1/4 GAIN 1/8

800 236 472 1887 3775

400 472 944 3775 7550

200 944 1887 7550 15099

100 1887 3775 15099 30199

50 3775 7550 30199 60398

25 7550 15099 60398 120796

Resolution: Lux/Bit

Integration Time (milliseconds) GAIN 2 GAIN 1 GAIN 1/4 GAIN 1/8

800 0.0036 0.0072 0.0288 0.0576

400 0.0072 0.0144 0.0576 0.1152

200 0.0144 0.0288 0.1152 0.2304

100 0.0288 0.0576 0.2304 0.4608

50 0.0576 0.1152 0.4608 0.9216

25 0.1152 0.2304 0.9216 1.8432

Power Save Modes

Another cool feature of the Ambient Light Sensor is its ability to run at extremely low
currents. Power save modes should be used when you're continuously reading ambient
light data. For example, if you're going to gather ambient light data every second, why
not use a power save mode and save battery life? There are four power save modes
that can be enabled with integration times of 100ms and above. Below is a table
showing the power save mode, the current draw, and it's refresh rate. Check out
Example 4 in the Arduino Library to see how to set it up and use the table below as a
reference.

Note the Refresh Time is the time needed for a new reading to be ready. Make sure
there is a delay in your code of at least this length between readings to ensure you're
getting new data.

Integration
Time

Power Save
Mode

Refresh Time
(milliseconds)

Current Draw
(microamperes)

Resolution
(lx/bit)

100 1 600 8 0.0288

100 2 1100 5 0.0288

100 3 2100 3 0.0288

100 4 4100 2 0.0288

200 1 700 13 0.0144

200 2 1200 8 0.0144

200 3 2200 5 0.0144

200 4 4200 3 0.0144

400 1 900 20 0.0072

400 2 1400 13 0.0072

400 3 2400 8 0.0072

400 4 4400 5 0.0072

800 1 1300 28 0.0036

800 2 1800 20 0.0036

800 3 2800 13 0.0036

800 4 4800 8 0.0036

Rounding Errors?!

Later on when you read back an interrupt threshold, you may notice that the interrupt
lux values are off by one in some cases. This is because of the inherent rounding error

with the Ambient Light Sensor. The final Lux value is calculated by multiplying the value
of the bits that represent the ambient light by a decimal number (0.2304 for example).
This decimal number is rounded to a whole number (e.g. 19.97 becomes 19) because
the sensor does not care about fractions of a Lux. I chose to read back the rounded
number because that's the interpreted value of the ambient light sensor and what is
stored in its' registers.

 Wiring:

Arduino VEML6030

A5(SCL) SCL

A4(SDA) SDA

3.3V 3V3

GND GND

Arduino Library

Sparkfun has written a library to make it even easier to get started with the Ambient Light Sensor. The library will
give you the full functionality of the sensor and provides example code to get the most out of your project. You can
obtain these libraries through the Arduino Library Manager by searching SparkFun Ambient Light Sensor.

Example Code:

#include <Wire.h>

#include "SparkFun_Qwiic_Scale_NAU7802_Arduino_Library.h" // Click here to get the

library: http://librarymanager/All#SparkFun_NAU7802

NAU7802 myScale; //Create instance of the NAU7802 class

void setup()

{

 Serial.begin(115200);

 Serial.println("Qwiic Scale Example");

 Wire.begin();

 if (myScale.begin() == false)

 {

 Serial.println("Scale not detected. Please check wiring. Freezing...");

 while (1);

 }

 Serial.println("Scale detected!");

}

void loop()

{

 if(myScale.available() == true)

 {

 int32_t currentReading = myScale.getReading();

 Serial.print("Reading: ");

 Serial.println(currentReading);

 }

}

//END///

Example 1: Ambient Light Basics

In this first example, we'll get you comfortable with gathering ambient light and setting
two vital properties of the sensor's ability to read light: the gain and the integration
time. These two properties determine the resolution (accuracy) of the reading and the

available ranges of light that you can read! For example, a gain of 1/8 and 800ms
integration time cannot read anything above 3775 Lux. This means you'll max out your
sensor outdoors but would be a proper setting for dim rooms due to it's higher
resolution.

At the top of the example we have three variables gain, time, and luxval. The first two
hold the value for the gain and integration time settings mentioned

above. Gain settings can be: 2, 1, 1/4, and 1/8; typically 1/4 gain will capture

everything you need with good resolution. Possible integration times can

be 800, 400, 200, 100, 50, 25 and by default the sensor is set to 100; times are in

milliseconds. Check the Gain and Integration Time table above under Hardware
Overview to see maximum illumination capabilities and resolution for every setting.
If you have any doubt with which settings to pick, just keep the example code's default
settings: a gain of 1/4 (0.125) and an integration time of 100ms. This will give you a
range of up to 15,000 Lux with a decent resolution!

In the setup, we call light.begin() to check if we can communicate with the SparkFun

Ambient Light Sensor. Next, we call

the light.setGain() and light.setIntegTime() functions giving them the variables holding

the gain and time values above. Next we'll read back those values to make sure that
they were set correctly. That's it! We're now set to read some light!

One thing to keep in mind is that you need to set a delay() in between readings.

The Integration Time is the amount of time that the sensor uses to fill its' sensitive
components with light. If you set an integration time of 100ms then make sure you're
delay is at least that long. A longer integration time will need a longer delay.

