

SmartElex 6 Degrees of Freedom Breakout - LSM6DSO

Note: This tutorial is for the LSM6DSO. It is important to note that last designation for

the IC is the letter O as opposed to the number 0. There is also the LSM6DS0 that was

released by STMicroelectronics but it is EOL.

The LSM6DSO is an accelerometer and gyroscope sensor with a giant 9 kbyte buffer
and embedded processing interrupt functions, specifically targeted at the cellphone
market. The sensor is super-flexible and can be configured specifically for an
application. We've put together a driver and slew of examples to help you explore the
possibilities.

Some of the things the LSM6DSO can do:

• Read accelerometer data up to 6.66 kilosamples per second, for super accurate
movement sensing

• Read gyroscope data up to 6.66 kilosamples per second
• Operates at 0.55mA for up to 6.66 ksps modes
• Read temperature
• Buffer up to 9 kbytes of data between reads (built-in FIFO)
• Count steps (Pedometer)
• Detect shocks, tilt, motion, taps, double-taps
• Host other sensors into its FIFO

• Drive interrupt pins by embedded functions or by FIFO low-capacity/overflow
warning.

 Warning! The LSM6DSO is a 3.3V device! Supplying voltages greater than ~3.6V can
permanently damage the IC. As long as your Arduino has a 3.3V supply output, and
you're ok with using I2C, you shouldn't need any extra level shifting. If you want to
use SPI, you may need a level shifter.

Power and Logic Levels

We recommend powering the board through the connector when quickly prototyping.
For a more secure connection, you can always solder to the PTH labeled 3V3 and GND.
The recommended input voltage when using the board with a microcontroller is 3.3V if
you are using the connector. However, you can use a regulated supply voltage between
1.71V and 3.6V to power the sensor. The logic levels will match the input voltage (e.g. if
the sensor is powered at 3.3V, the logic level will be 3.3V as well).

I2C

The main method of reading the LSM6DSO is through the I2C bus. The board includes
two connectors for fast prototyping and removes the need for soldering. You can
also solder to the PTHs labeled as SDA and SCL as an alternative. The default address
for the IC is 0x6B. However, you can adjust the jumper on the back of the board to
change the address to 0x6A.

SPI

If you decide to use a SPI bus, you will need to solder header pins or wires to the board.

• SDA/SDI - Device data in. Note that the SDA pin used for I2C is also the SDI pin
used for SPI. Flipping the board to the bottom side will show the label for the SPI
pin.

• SCL - Serial clock for either I2C or SPI.
• SDO - Device data out. By default, the SDO pin is connected to power to set the

I2C address. Make sure to cut the trace as explained below if you decide to use
this sensor in SPI mode.

• CS - Chip select.

When using the board in SPI mode, you will need to cut the I2C jumper for the default
address (e.g. 0x6B) on the back and leave the jumper pads unconnected when using
SPI.

Interrupt Pins

INT1 and INT2 are programmable interrupts for the accelerometer and gyroscope. They
can be set to alert on over/under thresholds, data ready, or FIFO overruns. Make sure
these are connected to an INPUT pin to prevent driving 5v back into the LSM6DSO.

There are a variety of interrupts on the LSM6DSO. While connecting these is not as
critical as the communication or power supply pins, using them will help you get the
most out of the chip.

The interrupt pins are INT1 and INT2. One or both pins can be software configured and
mapped to the following conditions:

• Step detected
• Step detected after delta time
• Step counter overflowed
• Significant motion (shock, drop)
• FIFO full
• FIFO overrun
• FIFO threshold reached (Datasheet calls this the "watermark")
• Boot status
• Gyroscope data ready
• Accelerometer data ready
• Inactivity
• Single tap
• Wake-up
• Free-fall
• Double tap
• 6D (orientation)
• Tilt
• Timer
• Ironing interrupt

Only a few interrupt examples are provided. See the datasheet and application guide
for using the advanced interrupt features.

Auxiliary Pins

The auxiliary serial data output pins are used to attach slave I2C and auxiliary SPI 3/4-
wire devices for FIFO data collection. This function is not covered in this tutorial.

• OCS - aux chip select

• SCX - aux serial clock
• SDIX - aux serial data input
• SDOX - aux serial data output

Reference Axis

For easy reference, we've documented the 6DoF's vectors with 3D Cartesian coordinate
axes on the top and bottom side of the board. Make sure to orient and mount the
board correctly for your application. Remember, it's all relative.

LED

The board includes an LED indicator that lights up when there is power available.

Jumper Pins

There are five jumpers on the back of the board. LED - This is connected to the PWR
LED on the top of the board. Cutting this disables the LED.

• I2C - The I2C jumper is connected to the 4.7kΩ pull-up resistors for the I2C bus.
Most of the time you can leave these alone unless your project requires you
to disconnect the pull-up resistors. SPI works with these connected but really
should be cut apart for better signal shape at high speeds and to lower power
consumption.

• 0x6B/0x6A - These jumpers are used to select the address 0x6B (default) or 0x6A
for I2C communication. This jumper must be opened for SPI mode or the SDO
line will not supply data.

• SCX - By default, this pin is connected to GND since ST recommends pulling the
unused SCX to power or ground when not in use. For most users, you can leave
this jumper alone. If your project requires connecting slave devices to the
auxiliary pin, cut this trace.

• SDIX - By default, this pin is connected to GND since ST recommends pulling the
unused SDIX to power or ground when not in use. For most users, you can leave
this jumper alone. If your project requires connecting slave devices to the
auxiliary pin, cut this trace.

I2C Mode

Arduino LSM6DSO

A5(SCL) SCL

A4(SDA) SDA

3.3V 3V3

GND GND

SPI Mode

NOTE: Use logic converter between microcontroller and the LSM6DSO while

using SPI.

Arduino LSM6DSO

D13(SCK) SCL

D12(MISO) SDO

D11(MOSI) SDA

D10(SS) CS

5V(THROUGH LOGIC CONVERTER) 3V3

GND GND

Note: When using the LSM6DSO, make sure to firmly attach the thing that is being
measured to filter movement noise. To secure the board using its mounting holes, you
will need screws and standoffs.

Installing the Arduino Library

SparkFun have written an Arduino library to help make interfacing with the LSM6DSO's
gyro, accelerometer, and temperature sensor as easy-as-possible. Download using the
Arduino library manager by searching for 'SparkFun Qwiic 6DoF LSM6DSO Arduino

Note: The LSM6DSO library is based on the LSM6DS3's Arduino Library. While the
libraries are similar, the LSM6DS3's library will not work with the LSM6DSO. Make sure
to download the correct library for your IC!

Example - Basic Readings

There are a few examples in the library but we recommend using the Basic Readings in
I2C mode to get started.

Hook up the LSM6DSO to the I2C bus, and click "File > Examples > SparkFun Qwiic 6
DoF - LSM6DSO > Basic_Readings". This example demonstrates the highest level of

usage. Besides setting up the Wire library and bus, you will you have to do is create a

variable of the type "LSM6DSO", set it to .begin();, and initialize the BASIC_SETTINGS.

To read the accelerometer, gyro, or temperature sensor using the Arduino Serial
Monitor.
We'll assume that you have selected the board (in this case the Arduino Uno), COM
port at this point. If you have the code open, hit the upload button. Otherwise, copy
and paste the following into the Arduino IDE.

#include "SparkFunLSM6DSO.h"

#include "Wire.h"

//#include "SPI.h"

LSM6DSO myIMU; //Default constructor is I2C, addr 0x6B

void setup() {

 Serial.begin(115200);

 delay(500);

 Wire.begin();

 delay(10);

 if(myIMU.begin())

 Serial.println("Ready.");

 else {

 Serial.println("Could not connect to IMU.");

 Serial.println("Freezing");

 }

 if(myIMU.initialize(BASIC_SETTINGS))

 Serial.println("Loaded Settings.");

}

void loop()

{

 //Get all parameters

 Serial.print("\nAccelerometer:\n");

 Serial.print(" X = ");

 Serial.println(myIMU.readFloatAccelX(), 3);

 Serial.print(" Y = ");

 Serial.println(myIMU.readFloatAccelY(), 3);

 Serial.print(" Z = ");

 Serial.println(myIMU.readFloatAccelZ(), 3);

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux
https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux

 Serial.print("\nGyroscope:\n");

 Serial.print(" X = ");

 Serial.println(myIMU.readFloatGyroX(), 3);

 Serial.print(" Y = ");

 Serial.println(myIMU.readFloatGyroY(), 3);

 Serial.print(" Z = ");

 Serial.println(myIMU.readFloatGyroZ(), 3);

 Serial.print("\nThermometer:\n");

 Serial.print(" Degrees F = ");

 Serial.println(myIMU.readTempF(), 3);

 delay(1000);

}

//END//

After uploading, open the Serial Monitor and set it at 115200.

